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Evaluation of lattice sums via telescoping over topographs
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X1 + X2 + X3 — x1X2X3
arctan(x) + arctan(xy) + arctan(x3) = arctan <—
1 — x1xp — XoX3 — X3X]1

X1 + X2 + X3 + X1 X2X;
arctanh(xy) + arctanh(xp) + arctanh(x3) = arctanh (M>

1+ x1x2 + XoX3 + X3X1


https://arxiv.org/abs/2510.02082

Corollary: “A half-shift reflection identity for the digamma
function”, N.K., https://arxiv.org/abs/2510.00012.

2WA(x) + Iog4+1/1(% +x) —i-w(% —x) =0,

where ¢(z) = LInl(z) = —v + z—:o(ﬁ - niz) is the digamma and

°° y
Wi(x) = 2/0 §R((y2 + 1)(e7r(y+2ix) — 1)) dy-

Proof. Define the cosine integral

Ci(z) := —/ 5L 4.

t

Because the function is even about x = % all sine Fourier coefficients
vanish. Collecting the constant and cosine terms yields, for 0 < x < 1,

o
(34 x) +¥(3 —x) = —2log2+4) (~1)* Ci(rk) cos(2mkx).
k=1
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Sums in number theory (I) zeta vaIues

Basel problem 1650: Find 1 + —l— + 16 +.
Leonhard Euler 1734: Define C( )= 1 + 2 -|- + + 2 +..., then

1 1 1 (27)*"Ban
2)=1 = 2 1) o=
(@) =1+ + g+ g+ = clam = (-1 BT
Roger Apéry 1978: ((3) is irrational.
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Sums in number theory (1): zeta values
Basel problem 1650: Find 1+ % + é + 1—16 + ...
Leonhard Euler 1734: Define {(s) =1+ % + 3 + & + ..., then

n+1 (27T)2n Ban

g(z):1+1+5+i+---:%,g(zn):(—l) 2]

4 9 16
Roger Apéry 1978: ((3) is irrational.

Don Zagier 1993: Define f(m,n) = -1 + -1 + L Then one
checks directly that

f(ma")—f(m—i—n,n)—f(m,m—i—n):W

and hence, summing over all m,n > 0, that

@@= - - |fmn=Xfnn=2 @)

m,n>0 m>n>0 n>m>0 n>0
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Sums in number theory (Il): lattice sums

J. P. G. L. Dirichlet 1839: Dedekind zeta function for Z[i]. In simple
terms, for s > 1 one considers the sum over lattice points in Z? and proves

that
1 1 1 1
Z (m? + n2)s = 4((5)'(1_§+§—%+- ..)=4¢(s) L(s, x-4)-
(m.n)€Z2\{(0,0)}
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Sums in number theory (Il): lattice sums

J. P. G. L. Dirichlet 1839: Dedekind zeta function for Z[i]. In simple
terms, for s > 1 one considers the sum over lattice points in Z? and proves
that

1 1 1 1
(m,n)€Z\{(0,0)}

Leonard Tornheim 1950, Louis J. Mordell 1958: Tornheim introduced
1
T(s1,%,53) = Z

s ™ n%(m+ n)ss’

and Mordell later considered higher-dimensional analogues. For s;,s > 1

1
mil...mf’(m1+...+mr)s'

CMmT,r(S1, o550 8) =
my,...,m:>1
It interpolates between products of zeta values and multiple zeta values,
admits meromorphic continuation and functional relations, and at integer
arguments is expressed as Q-linear combinations of multiple zeta values.
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A new proof of an old result
Theorem. For A= {(x,y) | x,y € Z>O,det(x,y) =1}, we have

2 =17/2.
2N |y||2 PE

Proof (N.K., 2024, https://arxiv.org/abs/2410.10884).

Define F(x,y) = ”X” ”y”2, F : (Z?)?> — R. Then,

—2det(x, y)?
X112 - My 112 - llx + 112

F(x,y) = F(x+y,y) = F(x,x +y) =

We telescope
F(x,y) = F(x +y,y) = F(x,x +y)

over AN [0, n]* obtaining the sum of —F(x 4+ y,y) — F(x,x + y) over
{(x,y) € Ax+y ¢[0,n}.
The latter sum tends to —m/2 since the set of angles at the origin of the

parallelograms partition the angle /2 of the first quadrant. Ol
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Farey sunburst and the boundary term asymptotics

At step 1 there is a single parallelogram
spanned by (1,0) and (0,1). At step 2 it
is bisected by the mediant ray (1,1),
producing two parallelograms, spanned by
(1,0),(1,1) and by (1,1),(0,1). The
figure above shows the next refinements:
step 3 (in black) and step 4 (in red).

Let x,y € Z220 with det(x, y) =1,
and let 8 = Z(x,y). Then the area
identity gives
det 1
sinf = etlx,y) _ ,
Iyl Ayl

1 1
= +o( )
[yl IxIPly [P

For the telescoping primitive

Xy cos
F(x,y) = =
IxIPlylz - lixIHiyl

1 1
(o)
X[y Ix13lyIP

so F(x,y) =0+ O(l|x[|>[ly[=).
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Class number for binary quadratic forms (1)
Adolf Hurwitz 1905:

Theorem

For D < 0, a fundamental discriminant, all the terms in the following sum
are positive and this sum converges to h(D):

h(D) = —|D 1
(D) 127r| | AZ% A(A+ B+ C)C’ (1)
B2—4AC=D

where A, B, C,D € Z and

1 for D < —4,
wp =1 2 for D = —4, (2)
3 for D = —3.

The formula on the previous slide is a particular case of this theorem for
D= —4
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Class number for binary quadratic forms (I1)
For v = (m,n), let g = [A, B, C] denote a quadratic form
q(v) = Am? + Bmn + Cn®.

Two binary quadratic forms [A, B, C] and [A’, B’, C'] with integer coefficients are
called equivalent if there exist a, b, c,d € Z with ad — bc = 1 such that

A'm? + B'mn + C'n* = A(am + bn)? + B(am + bn)(cm + dn) + C(cm + dn)>.
That is,
[A, B, C] ~ [Aa® + Bac + Cc?,2Aab + B(ad + bc) + 2Ccd, Ab* + Bbd + Cd?].
In particular,
[1,0,1] ~ [a* + ¢?,2ab + 2cd, b* + d°] = [A, B, C], and (3)
A+ B+ C = (a+ b)>+ (c+ d)? in this case.

The discriminant D of a binary quadratic form [A, B, C] is B?> — 4AC and the
discriminant D is invariant under the above equivalence.
Denote by h(D) the number of equivalence classes of forms with gcd(A, B, C) =1
and discriminant D. Although formulas for h(D) exist, it is still an open problem
to prove that there exist infinitely many values of D > 0 for which h(D) = 1.
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Example

For the quadratic form q(v) = ||v||?> = m? + n?, the discriminant D = —4,
and h(D) = 1. Since we have

1 s
= Z? (4)
b, cdes, (@ + B2)( + ) (2 + €2+ (b+ dP?)
ad—bc=1
and
1 1

AA+B+OC (24 b2)<(a+ c)2 + (b+ a')2)(c2 +d2)

putting it all together and multiplying by the constant 3 coming from the
three cyclic orders, we rewrite Hurwitz's theorem as

2 3 wW_4 1
h(—4)=1=—.2%. 20 = 222 .| _ 432 .
(=4) 127 4 127 =4 Az;?) A(A+ B+ C)C

B2—4AC=—4

v
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Class number for binary quadratic forms (1)

Hurwitz's result has been largely unnoticed for nearly a century, with the
only exceptions: L.E. Dickson's History of number theory in 1952, and
Robert Sczech's work on Eisenstein cocycles for GL,Q in 1992.

It was revived in 2019, in the Duke-Imamoglu-Téth paper “On a class
number formula of Hurwitz”, and a formula for the indefinite case

(D > 0), similar to Hurwitz's, was established:

Theorem (Duke-Imamoglu-Téth)

For D > 0, a fundamental discriminant,

D1/2 D3/2

[A,B,C] reduced = A,C,A+B+C>0 3(8 + 2A)B(B e 2C)
B2—4AC=D 5% aAC—D

Here ep, the fundamental unit, is defined as ep := (tp + up V' D) /2, where
(tp,up) is the smallest solution to t?> — Du? = 4 in positive integers.

Nikita Kalinin, GTHT Telescoping over topographs February 19, 2026 11/25



Conway's Topographs (1)

In 1997, in his book The Sensual (Quadratic) Form, John H. Conway
introduced topographs, a graphical tool for visualizing binary quadratic
forms and their values over the integers. A topograph provides an intuitive
and surprisingly powerful visual framework for understanding, for example,
reduction algorithms.

In 2024, Cormac O'Sullivan proposed a unifying approach to the above
class number series via topographs.

Nikita Kalinin, GTHT Telescoping over topographs February 19, 2026 12/25



Conway's Topographs (1)

In 1997, in his book The Sensual (Quadratic) Form, John H. Conway
introduced topographs, a graphical tool for visualizing binary quadratic
forms and their values over the integers. A topograph provides an intuitive
and surprisingly powerful visual framework for understanding, for example,
reduction algorithms.

In 2024, Cormac O'Sullivan proposed a unifying approach to the above
class number series via topographs.

A topograph for a binary quadratic form g is an infinite trivalent planar
tree 7 with labels in the connected components (regions) of R\ 7. Each
region corresponds bijectively to a pair (v, —v) of primitive lattice vectors
in Z2 (i.e., a point in PQ?), and the label on this region is the value

q(v) = g(—v) of the quadratic form g. At each vertex, the three adjacent
regions correspond to three primitive vectors v, w, v + w, forming a basis
of Z2. Thus, near each vertex of T the labels r, s, t on regions are exactly
q(v), q(w), g(v + w) for a certain basis (v, w) of Z2.
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Conway's Topographs (I1): labels via a quadratic form

[vi — wa]? vi + va?

Local picture near a vertex (a superbase Local picture near an edge (here g(v) = ||v||?).

{v1, v, v3}).

We label each region (corresponding to v € PQ?) by g(v) = q(—v). For the norm form
q(v) = ||v||? with v = (m, n) this is ||v||> = m? + n?, and the parallelogram law says

i = val® + lve + vl = 2(lvall? + llval ).
More generally, for any binary quadratic form g one has
q(vi — v2) +q(v1 + v2) = 2(q(v1) + q(2)).

This relation propagates labels across the tree: once q is known on a superbase, one can recover
g on all of Z2 by iterating these local moves.
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Conway's Topographs (I11)

Equivalently, a topograph is a planar connected 3-valent tree with labels
on vertices, edges, and regions. Near each edge, labels must satisfy
r+u=2(s+t). So, r,s + t,u form an arithmetic progression with
difference g :== s+t — r. Note: e + g = 2t.

s £ s
r u r
e/ &
t t
D := —ef — fg — eg is the same for all vertices,
(indeed,wehaveg—e:Zt:f—gand(g—e)(g—f):(i—g)(h—g):g2—eg—gf+ef:g2+ih—ig—hg)

and is called the discriminant of the topograph.
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Useful identities in a topograph (1)

g f e grtfttes g(f+te)+fletg)t+e(f+g) -D
st rs ot rst N 2rst st
1 1 1 ef+fg+ge —-D
e f g efg  efg’
s r t gr+ft+es g(f+e)+fletg)+e(f+g) -—-D
fg ef eg efg 2efg efg
Higher-order analogues include:
& f e 6 Dlrtsty)
S22 r2s2 22 st r’s2¢2 7
s r .t _ 3 Det+f+g)
f2g2 e2f2 ezg2 - Qefg 2e2f2g2 ’
1.1, 1 D 3D(etfig) 3
e3 f3 g3 - e3f3g3 e2f2g2 efg'
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Useful identities in a topograph (I1)

Remarkably, the same local combinatorics also encodes trigonometric or
hyperbolic angle-addition relations, depending on the sign of the discriminant.

Lemma (Local trigonometric/hyperbolic relations)

For D < 0, for appropriate branches of arcsin and arctan, we have

arcsin(% . @) + arcsin(r—fs . @) + arcsin(% . @) =0, (5)
arctan(E) + arctan(r) + arctan(?) =0. (6)

For D > 0 and |e|, |f|, |g| > V/D, we have
arcsinh(% . ‘/75) + arcsinh(r—fs . ‘/75) + arcsinh(ﬁ ‘/75
vD

arctanh( f) + arctanh(‘r) + arctanh(

Proof idea: — arcsin A = arcsin B + arcsin C is equivalent to

—A = B+v1— C2+ CV1 — BZ?; squaring twice makes all terms cancel.
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O’'Sullivan interpretation

Theorem (O’Sullivan, 2024, Topographs for binary quadratic forms

and class numbers)

Let T be any topograph of discriminant D < 0. Then

1
|D|3/2 Z — =4, (9)

"St‘
: S
r t €]

where we sum over all vertices of T, each vertex contributing one term;
here r,s, t denote the labels on regions adjacent to a given vertex of T .

v

Then, Hurwitz's theorem follows because the RHS of it is essentially the
sum over all vertices of all topographs of discriminant D, and the number
of topographs of discriminant D is h(D).

A similar formula can be written for D > 0.
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Telescoping identities (1)

N Ss T/
s(V) )4
A . crown(7")
740 *
(V) 1f (V) T"
e(¥)
Vo

r(Vo)e(V,) (Vo)
root E
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Telescoping identities (I1)

Theorem (N.K. 2025, https://arxiv.org/abs/2510.02082)

Let T be any topograph of discriminant D < 0. Let T’ be the upper half

of T with respect to a root E. Suppose T’ is admissible. Then, for a
suitable branch of arcsin and for the principal branch of arctan,

Z 1 1 e 2arcsin( 2% - —V;D) (10)
rst D \ rpto —D ’
S

ry€T

1 1 arctan(@) 1 "
> @ o\ v e @
e

where the summation is over all vertices of T', with each contributing one
term.

V.
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Telescoping identities (I11)

The proofs consist of telescoping F(x,y) — F(x +y,y) — F(x,x + y) over
the vertices V = (x, y,x + y) of a topograph for F(V) = £(V) due to

To control the sum “at infinity” we use

arcsin(§ - Y5P) + arcsin( £ - ¥5P) + arcsin(£ - ¥5P) = 0.

Nikita Kalinin, GTHT Telescoping over topographs February 19, 2026 20/25



Telescoping identities (I11)

The proofs consist of telescoping F(x,y) — F(x +y,y) — F(x,x + y) over
the vertices V = (x, y,x + y) of a topograph for F(V) = £(V) due to

To control the sum “at infinity” we use

arcsin( - —VZ_D) + arcsin(£ - ¥52) + arcsin(£ - ¥5=) = 0.

s 2

B

It is interesting to note that the above identities are equivalent to
cot(X) cot(Y) = cot(X) cot(X + Y) + cot(Y) cot(X + Y) + 1.

Similarly for (D < 0) arctan and (D > 0) arctanh, applying the identity
below:

arctan(xy) + arctan(xz) + arctan(x3) = arctan <

X1 + X2 + X3 — X1X2X3
— X1X2 — X2X3 — X3X1 '

arctanh(xp )4-arctanh(xz)+arctanh(x3) = arctanh < X1+ X2 + X3 + x1X2X3 ) .

14+ x3x0 + xox3 + X3X1
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Zagier's identity (1)
Let H = (Z x Zxo) U (Z>o x {0}), the set of lattice vectors in the closed upper
half-plane with the negative x-axis removed.

Theorem (N.K., https://arxiv.org/abs/2410.10884)

For every integer n > 1,

2

> BEHRERIE = an ™
x,yeH Y Y
det(x,y)=n

Each non-collinear triple yields exactly 12 ordered pairs (x, y) with x,y € H and
det(x,y) > 0: six permutations of (w1, wz,ws3) and a factor 2 from central
symmetry.

Thus
1

Diaa(i)—26(i3) =12 3, > IXIZ Iy % + v 2

n€Zso  x,yeH
det(x,y)=n
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Zagier's identity (Il): at z =1/, s = 3 and general case

1
3¢(3Y= D _2E —12
™¢(3) = D11a(i) ,; xge:H X[ My 112 11x + v 112
det(x,y)*
~123 o) = 6r > P~ 6r (3)¢() = 7).

n>1 n>1

because ), ; o1(n)n~* = ((s)((s — 1) and ¢(2) = 72 /6. Similarly,
Theorem (N.K., https://arxiv.org/abs/2410.10884)

Forz=x+iy € H and s > —1,

/ | det(wl, w2)|_5 (s
w1+wr4w3=0 1283 Y
WkEZLz+L

Here " indicates that collinear triples are omitted.
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Geometric interpretation
Use the rational parametrization of x?> 4+ y? =1 by

f-(a)_> 2ab  a* — b?

A a2+ b2 a2+ b))

Note that f((5)) = (0,1), f((})) = (0,—1). By a direct calculation, the
area of the triangle with vertices £((3)), f((5)), f((73)) equals to

2|ad — bc|? 2 (12)
(2 +b?)-(c2+d?)-((a+c)>+(b+d)?) rst

Here r, s, t denote the values of the quadratic form g(n, m) on a superbase

vectors {(3), (5),— (;75) }, the notation that we use for the topograph’s

labels on regions.

Theorem (Hurwitz, 1905)

1 T

Z 2 2 2 2 D) > = —.

s, @ TP+ @) (@t P+ (b+dp) 4
ad—bc=1
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Thank you very much!
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