
4
∑

(x,y)∈Z2≥0
det(x,y)=1

1

‖x‖2 ‖y‖2 ‖x + y‖2
= π,

h(D) =
|D|3/2

12π

∑
a>0

b2−4ac=D

1

a(a + b + c)c
, for D < −4

D1,1,1(z) =
∑′

ω1+ω2+ω3=0
ωi∈Zz+Z

Im(z)3

|ω1ω2ω3|2
= 2E3(z) + π

3
ζ(3)

Evaluation of lattice sums via telescoping over topographs
Nikita Kalinin, Guangdong Technion Israel Institute of Technology

Special Functions and Number Theory seminar
https://arxiv.org/abs/2510.02082

arctan(x1) + arctan(x2) + arctan(x3) = arctan

(
x1 + x2 + x3 − x1x2x3

1− x1x2 − x2x3 − x3x1

)

arctanh(x1) + arctanh(x2) + arctanh(x3) = arctanh

(
x1 + x2 + x3 + x1x2x3

1 + x1x2 + x2x3 + x3x1

)

https://arxiv.org/abs/2510.02082


Corollary: “A half-shift reflection identity for the digamma
function”, N.K., https://arxiv.org/abs/2510.00012.

2W1(x) + log 4 + ψ
(
1
2 + x

)
+ ψ

(
3
2 − x

)
= 0,

where ψ(z) = d
dz ln Γ(z) = −γ +

∞∑
n=0

( 1
n+1 −

1
n+z ) is the digamma and

W1(x) = 2

∫ ∞
0
<

(
y

(y2 + 1)
(
eπ(y+2ix) − 1

)) dy .

Proof. Define the cosine integral

Ci(z) := −
∫ ∞
z

cos t

t
dt.

Because the function is even about x = 1
2 , all sine Fourier coefficients

vanish. Collecting the constant and cosine terms yields, for 0 < x < 1,

ψ
(
1
2 + x

)
+ ψ

(
3
2 − x

)
= −2 log 2 + 4

∞∑
k=1

(−1)k Ci(πk) cos(2πkx).
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Sums in number theory (I): zeta values
Basel problem 1650: Find 1 + 1

4 + 1
9 + 1

16 + . . .
Leonhard Euler 1734: Define ζ(s) = 1 + 1

2s + 1
3s + 1

4s + . . . , then

ζ(2) = 1 +
1

4
+

1

9
+

1

16
+ · · · =

π2

6
, ζ(2n) = (−1)n+1 (2π)2nB2n

2(2n)!
.

Roger Apéry 1978: ζ(3) is irrational.

Don Zagier 1993: Define f (m, n) = 1
mn3

+ 1
2m2n2

+ 1
m3n

. Then one
checks directly that

f (m, n)− f (m + n, n)− f (m,m + n) =
1

m2n2

and hence, summing over all m, n > 0, that

ζ(2)2 =

 ∑
m,n>0

−
∑

m>n>0

−
∑

n>m>0

 f (m, n) =
∑
n>0

f (n, n) =
5

2
ζ(4).
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Sums in number theory (II): lattice sums
J. P. G. L. Dirichlet 1839: Dedekind zeta function for Z[i ]. In simple
terms, for s > 1 one considers the sum over lattice points in Z2 and proves
that ∑
(m,n)∈Z2\{(0,0)}

1

(m2 + n2)s
= 4ζ(s)·(1− 1

3s
+

1

5s
− 1

7s
+. . . ) = 4ζ(s) L(s, χ−4).

Leonard Tornheim 1950, Louis J. Mordell 1958: Tornheim introduced

T (s1, s2, s3) =
∑

m,n≥1

1

ms1ns2(m + n)s3
,

and Mordell later considered higher-dimensional analogues. For si , s > 1

ζMT ,r (s1, . . . , sr ; s) :=
∑

m1,...,mr≥1

1

ms1
1 · · ·m

sr
r (m1 + · · ·+ mr )s

.

It interpolates between products of zeta values and multiple zeta values,
admits meromorphic continuation and functional relations, and at integer
arguments is expressed as Q-linear combinations of multiple zeta values.
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A new proof of an old result
Theorem. For A =

{
(x , y) | x , y ∈ Z2

≥0, det(x , y) = 1
}
, we have

2
∑
A

1

‖x‖2 · ‖y‖2 · ‖x + y‖2
= π/2.

Proof (N.K., 2024, https://arxiv.org/abs/2410.10884).

Define F (x , y) = x ·y
‖x‖2·‖y‖2 , F : (Z2)2 → R. Then,

F (x , y)− F (x + y , y)− F (x , x + y) =
−2 det(x , y)2

‖x‖2 · ‖y‖2 · ‖x + y‖2
.

We telescope
F (x , y)− F (x + y , y)− F (x , x + y)

over A ∩ [0, n]4 obtaining the sum of −F (x + y , y)− F (x , x + y) over
{(x , y) ∈ A, x + y /∈ [0, n]2}.
The latter sum tends to −π/2 since the set of angles at the origin of the
parallelograms partition the angle π/2 of the first quadrant.
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Farey sunburst and the boundary term asymptotics

x

y

0

1
2

1

2

∞

1
3

2
3

3
2

3

At step 1 there is a single parallelogram
spanned by (1, 0) and (0, 1). At step 2 it
is bisected by the mediant ray (1, 1),
producing two parallelograms, spanned by
(1, 0), (1, 1) and by (1, 1), (0, 1). The
figure above shows the next refinements:
step 3 (in black) and step 4 (in red).

Let x , y ∈ Z2
≥0 with det(x , y) = 1,

and let θ = ∠(x , y). Then the area
identity gives

sin θ =
det(x , y)

‖x‖ ‖y‖
=

1

‖x‖ ‖y‖
,

θ =
1

‖x‖ ‖y‖
+ O

(
1

‖x‖3‖y‖3

)
.

For the telescoping primitive

F (x , y) =
x · y

‖x‖2‖y‖2
=

cos θ

‖x‖ ‖y‖

=
1

‖x‖ ‖y‖
+ O

(
1

‖x‖3‖y‖3

)
,

so F (x , y) = θ + O(‖x‖−3‖y‖−3).
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Class number for binary quadratic forms (I)
Adolf Hurwitz 1905:

Theorem

For D < 0, a fundamental discriminant, all the terms in the following sum
are positive and this sum converges to h(D):

h(D) =
ωD

12π
|D|3/2

∑
A>0

B2−4AC=D

1

A(A + B + C )C
, (1)

where A,B,C ,D ∈ Z and

ωD =


1 for D < −4,

2 for D = −4,

3 for D = −3.

(2)

The formula on the previous slide is a particular case of this theorem for
D = −4.
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Class number for binary quadratic forms (II)
For v = (m, n), let q = [A,B,C ] denote a quadratic form

q(v) = Am2 + Bmn + Cn2.

Two binary quadratic forms [A,B,C ] and [A′,B ′,C ′] with integer coefficients are
called equivalent if there exist a, b, c , d ∈ Z with ad − bc = 1 such that

A′m2 + B ′mn + C ′n2 = A(am + bn)2 + B(am + bn)(cm + dn) + C (cm + dn)2.

That is,

[A,B,C ] ∼ [Aa2 + Bac + Cc2, 2Aab + B(ad + bc) + 2Ccd ,Ab2 + Bbd + Cd2].

In particular,

[1, 0, 1] ∼ [a2 + c2, 2ab + 2cd , b2 + d2] = [A,B,C ], and (3)

A + B + C = (a + b)2 + (c + d)2 in this case.

The discriminant D of a binary quadratic form [A,B,C ] is B2 − 4AC and the
discriminant D is invariant under the above equivalence.
Denote by h(D) the number of equivalence classes of forms with gcd(A,B,C ) = 1
and discriminant D. Although formulas for h(D) exist, it is still an open problem
to prove that there exist infinitely many values of D > 0 for which h(D) = 1.
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Example

For the quadratic form q(v) = ‖v‖2 = m2 + n2, the discriminant D = −4,
and h(D) = 1. Since we have∑

a,b,c,d∈Z≥0,
ad−bc=1

1

(a2 + b2)(c2 + d2)
(

(a + c)2 + (b + d)2
) =

π

4
, (4)

and

1

A(A + B + C )C
=

1

(a2 + b2)
(

(a + c)2 + (b + d)2
)

(c2 + d2)
,

putting it all together and multiplying by the constant 3 coming from the
three cyclic orders, we rewrite Hurwitz’s theorem as

h(−4) = 1 =
2

12π
· 23 · 3π

4
=
ω−4
12π
· | − 4|3/2

∑
A>0

B2−4AC=−4

1

A(A + B + C )C
.
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Class number for binary quadratic forms (III)

Hurwitz’s result has been largely unnoticed for nearly a century, with the
only exceptions: L.E. Dickson’s History of number theory in 1952, and
Robert Sczech’s work on Eisenstein cocycles for GL2Q in 1992.
It was revived in 2019, in the Duke-Imamoḡlu-Tóth paper “On a class
number formula of Hurwitz”, and a formula for the indefinite case
(D > 0), similar to Hurwitz’s, was established:

Theorem (Duke-Imamoḡlu-Tóth)

For D > 0, a fundamental discriminant,

h(D) log εD =
∑

[A,B,C ] reduced
B2−4AC=D

D1/2

B
+

∑
A,C ,A+B+C>0
B2−4AC=D

D3/2

3(B + 2A)B(B + 2C )
.

Here εD , the fundamental unit, is defined as εD := (tD + uD
√
D)/2, where

(tD , uD) is the smallest solution to t2 − Du2 = 4 in positive integers.
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Conway’s Topographs (I)

In 1997, in his book The Sensual (Quadratic) Form, John H. Conway
introduced topographs, a graphical tool for visualizing binary quadratic
forms and their values over the integers. A topograph provides an intuitive
and surprisingly powerful visual framework for understanding, for example,
reduction algorithms.
In 2024, Cormac O’Sullivan proposed a unifying approach to the above
class number series via topographs.

A topograph for a binary quadratic form q is an infinite trivalent planar
tree T with labels in the connected components (regions) of R \ T . Each
region corresponds bijectively to a pair (v ,−v) of primitive lattice vectors
in Z2 (i.e., a point in PQ2), and the label on this region is the value
q(v) = q(−v) of the quadratic form q. At each vertex, the three adjacent
regions correspond to three primitive vectors v ,w , v + w , forming a basis
of Z2. Thus, near each vertex of T the labels r , s, t on regions are exactly
q(v), q(w), q(v + w) for a certain basis (v ,w) of Z2.
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Conway’s Topographs (II): labels via a quadratic form

(±v2,±v3)

(±v1,±v3)

(±v1,±v2)

±v1

±v2

±v3

Local picture near a vertex (a superbase

{v1, v2, v3}).

‖v1 − v2‖2

‖v1‖2

‖v2‖2

‖v1 + v2‖2

Local picture near an edge (here q(v) = ‖v‖2).

We label each region (corresponding to ±v ∈ PQ2) by q(v) = q(−v). For the norm form
q(v) = ‖v‖2 with v = (m, n) this is ‖v‖2 = m2 + n2, and the parallelogram law says

‖v1 − v2‖2 + ‖v1 + v2‖2 = 2
(
‖v1‖2 + ‖v2‖2

)
.

More generally, for any binary quadratic form q one has

q(v1 − v2) + q(v1 + v2) = 2
(
q(v1) + q(v2)

)
.

This relation propagates labels across the tree: once q is known on a superbase, one can recover
q on all of Z2 by iterating these local moves.
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Conway’s Topographs (III)

Equivalently, a topograph is a planar connected 3-valent tree with labels
on vertices, edges, and regions. Near each edge, labels must satisfy
r + u = 2(s + t). So, r , s + t, u form an arithmetic progression with
difference g := s + t − r . Note: e + g = 2t.

r

s

t

u ge

f
r

s

t
ge

f
h

i

D := −ef − fg − eg is the same for all vertices,

(indeed, we have g − e = 2t = i − g and (g − e)(g − f ) = (i − g)(h − g) = g2 − eg − gf + ef = g2 + ih − ig − hg)

and is called the discriminant of the topograph.
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Useful identities in a topograph (I)

g

st
+

f

rs
+

e

rt
=

gr + ft + es

rst
=

g(f + e) + f (e + g) + e(f + g)

2rst
=
−D
rst

,

1

e
+

1

f
+

1

g
=

ef + fg + ge

efg
=
−D
efg

,

s

fg
+

r

ef
+

t

eg
=

gr + ft + es

efg
=

g(f + e) + f (e + g) + e(f + g)

2efg
=
−D
efg

.

Higher-order analogues include:

g

s2t2
+

f

r2s2
+

e

r2t2
= − 6

rst
− D(r + s + t)

r2s2t2
,

s

f 2g2
+

r

e2f 2
+

t

e2g2
= − 3

2efg
− D(e + f + g)

2e2f 2g2
,

1

e3
+

1

f 3
+

1

g3
= − D3

e3f 3g3
− 3D(e + f + g)

e2f 2g2
+

3

efg
.
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Useful identities in a topograph (II)
Remarkably, the same local combinatorics also encodes trigonometric or
hyperbolic angle-addition relations, depending on the sign of the discriminant.

Lemma (Local trigonometric/hyperbolic relations)

For D < 0, for appropriate branches of arcsin and arctan, we have

arcsin
(

e
rt ·
√
−D
2

)
+ arcsin

(
f
rs ·
√
−D
2

)
+ arcsin

(
g
st ·
√
−D
2

)
= 0, (5)

arctan
(√
−D
e

)
+ arctan

(√
−D
f

)
+ arctan

(√
−D
g

)
= 0. (6)

For D > 0 and |e|, |f |, |g | >
√
D, we have

arcsinh
(

e
rt ·
√
D
2

)
+ arcsinh

(
f
rs ·
√
D
2

)
+ arcsinh

(
g
st ·
√
D
2

)
= 0, (7)

arctanh
(√

D
e

)
+ arctanh

(√
D
f

)
+ arctanh

(√
D
g

)
= 0. (8)

Proof idea: − arcsinA = arcsinB + arcsinC is equivalent to
−A = B

√
1− C 2 + C

√
1− B2; squaring twice makes all terms cancel.
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O’Sullivan interpretation

Theorem (O’Sullivan, 2024, Topographs for binary quadratic forms
and class numbers)

Let T be any topograph of discriminant D < 0. Then

|D|3/2
∑

r
s
t
∈ T

1

|rst|
= 4π, (9)

where we sum over all vertices of T , each vertex contributing one term;
here r , s, t denote the labels on regions adjacent to a given vertex of T .

Then, Hurwitz’s theorem follows because the RHS of it is essentially the
sum over all vertices of all topographs of discriminant D, and the number
of topographs of discriminant D is h(D).

A similar formula can be written for D > 0.
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Telescoping identities (I)
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Telescoping identities (II)

Theorem (N.K. 2025, https://arxiv.org/abs/2510.02082)

Let T be any topograph of discriminant D < 0. Let T ′ be the upper half
of T with respect to a root E . Suppose T ′ is admissible. Then, for a
suitable branch of arcsin and for the principal branch of arctan,

∑
r

s
t ∈ T

′

1

|rst|
=

1

D

 e0
r0t0
−

2 arcsin( e0
r0t0
·
√
−D
2 )

√
−D

 , (10)

∑
f

e

g ∈ T ′

1

|efg |
=

1

D

arctan(
√
−D
e0

)
√
−D

− 1

e0

 , (11)

where the summation is over all vertices of T ′, with each contributing one
term.
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Telescoping identities (III)
The proofs consist of telescoping F (x , y)− F (x + y , y)− F (x , x + y) over
the vertices V = (x , y , x + y) of a topograph for F (V ) = e

rt (V ) due to

1

rst
=

1

D

(
e

rt
− f

rs
− g

st

)
,

To control the sum “at infinity” we use

arcsin( e
rt ·
√
−D
2 ) + arcsin( f

rs ·
√
−D
2 ) + arcsin( g

st ·
√
−D
2 ) = 0.

It is interesting to note that the above identities are equivalent to

cot(X ) cot(Y ) = cot(X ) cot(X + Y ) + cot(Y ) cot(X + Y ) + 1.

Similarly for (D < 0) arctan and (D > 0) arctanh, applying the identity
below:

arctan(x1) + arctan(x2) + arctan(x3) = arctan

(
x1 + x2 + x3 − x1x2x3

1− x1x2 − x2x3 − x3x1

)
.

arctanh(x1)+arctanh(x2)+arctanh(x3) = arctanh

(
x1 + x2 + x3 + x1x2x3

1 + x1x2 + x2x3 + x3x1

)
.
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Zagier’s identity (I)
Let H =

(
Z× Z>0

)
∪
(
Z≥0 × {0}

)
, the set of lattice vectors in the closed upper

half-plane with the negative x-axis removed.

Theorem (N.K., https://arxiv.org/abs/2410.10884)

For every integer n ≥ 1,∑
x,y∈H

det(x,y)=n

n2

‖x‖2 ‖y‖2 ‖x + y‖2
=

π

2n
σ1(n).

Each non-collinear triple yields exactly 12 ordered pairs (x , y) with x , y ∈ H and
det(x , y) > 0: six permutations of (ω1, ω2, ω3) and a factor 2 from central
symmetry.

Thus

D1,1,1(i)− 2E (i , 3) = 12
∑

n∈Z>0

∑
x,y∈H

det(x,y)=n

1

‖x‖2 ‖y‖2 ‖x + y‖2
.
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Zagier’s identity (II): at z = i , s = 3 and general case

π3ζ(3) = D1,1,1(i)− 2E (i , 3) = 12
∑
n≥1

∑
x ,y∈H

det(x ,y)=n

1

‖x‖2 ‖y‖2 ‖x + y‖2

= 12
∑
n≥1

π

2n3
σ1(n) = 6π

∑
n≥1

σ1(n)

n3
= 6π ζ(3)ζ(2) = π3ζ(3), .

because
∑

n≥1 σ1(n)n−s = ζ(s)ζ(s − 1) and ζ(2) = π2/6. Similarly,

Theorem (N.K., https://arxiv.org/abs/2410.10884)

For z = x + iy ∈ H and s > −1,∑′

ω1+ω2+ω3=0
ωk∈Zz+Z

| det(ω1, ω2)|−s

|ω1ω2ω3|2
=

6π

y3
ζ(s + 3) ζ(s + 2).

Here
∑′ indicates that collinear triples are omitted.
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Geometric interpretation
Use the rational parametrization of x2 + y2 = 1 by

f :
(
a
b

)
→
(

2ab

a2 + b2
,
a2 − b2

a2 + b2

)
.

Note that f (
(
1
0

)
) = (0, 1), f (

(
0
1

)
) = (0,−1). By a direct calculation, the

area of the triangle with vertices f (
(
a
b

)
), f (

(
c
d

)
), f (

(
a + c
b + d

)
) equals to

2|ad − bc|3

(a2 + b2) · (c2 + d2) · ((a + c)2 + (b + d)2)
=

2

rst
. (12)

Here r , s, t denote the values of the quadratic form q(n,m) on a superbase
vectors

{(
a
b

)
,
(
c
d

)
,−
(
a + c
b + d

)}
, the notation that we use for the topograph’s

labels on regions.

Theorem (Hurwitz, 1905)∑
a,b,c,d∈Z≥0

ad−bc=1

1

(a2 + b2)(c2 + d2)((a + c)2 + (b + d)2)
=
π

4
.
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Thank you very much!
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