LEGENDRE DUALITY FOR CERTAIN SUMMATIONS
OVER THE FAREY PAIRS

NIKITA KALININ

ABSTRACT. Each irreducible fraction p/q > 0 corresponds to a primitive
vector (p,q) € 72 with p,q > 0. Such a vector (p,q) can be uniquely
written as the sum of two primitive vectors (a,b) and (¢, d) that span a
parallelogram of oriented area one.

We present new summation formulas over the set of such parallel-
ograms. These formulas depend explicitly on a,b, c,d and thus define
a summation over primitive vectors (p,q) = (a + ¢,b + d) indirectly.
Equivalently, these sums may be interpreted as running over pairs of
consecutive Farey fractions ¢/d and a/b, ad — bc = 1.

The input for our formulas is the graph of a strictly concave function
g. The terms are the areas of certain triangles formed by tangents to
the graph of g. Several of these formulas for different g yield values
involving m. For g being a parabola we recover the famous Mordell-
Tornheim series (also called the Witten series). As a nice application we
also discuss formulas for continued fractions for an arbitrary real number
« that involve coefficients of the continued fraction and the differences
between the convergents and «.

Using Hata’s work, we interpret the above terms as the coefficients
of the Legendre transform of g in a certain Schauder basis, allowing us
to interpret our formulas as Parseval-type identities. We hope that the
Legendre duality sheds new light on Hata’s approach.

Raising the terms in the above summation formula to the power s
we obtain a function Fy(s). We prove that Fy(s) converges for s > 2/3
and diverges at s = 2/3 for a strictly concave g.

1. INTRODUCTION

Among other results, in this article we prove the following identity:
(1)
+ a c a—+c 2
42 (a - arctan (3) + ¢ arctan (E) — (a+ c¢) - arctan <b n d>> = T.

Throughout the paper, the notation i indicates that the quadruples
(a,b, ¢, d) range over all 4-tuples with a, b, ¢,d € Z>( satisfying ad — be = 1.
That is, the sum is taken over all area-one parallelograms with vertices
(0,0), (a,b), (c,d), (a +¢,b+d) € Z%,. Since ad — bc = 1, each such paral-
lelogram corresponds to a matrix

<Z g) € SL(2,7Z)

with non-negative entries. We refer to the set of such matrices as the positive
part of SL(2,7), denoted by SL4(2,7).
1
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Understanding “the positive part” of SL(2,Z) may bring new information
about Farey fractions and primitive vectors in Z2,.

For k > 1, let Farey, denote the Farey sequence of order k, i.e., the set
of all irreducible fractions in the lowest terms in [0, 1] with denominators
at most k, arranged in the ascending order. Each primitive vector (¢, q)
in Z%,, distinct from (1,0),(0,1), admits a unique decomposition (¢’,q) =
(a,b) + (¢, d) with

<Z dc) € SL,(2,7).

If (¢, q) is a primitive vector with ¢’ < ¢, then finding such a decomposition
is equivalent to expressing the fraction ¢’/q as the mediant of two consecutive
Farey fractions c¢/d < a/b in Farey,_; since

¢'/q=(a+c)/(b+d).

The pair of consecutive Farey fractions ¢/d, a/b, ad —bc = 1 is called a Farey
pair. For a historical background and modern developments related to Farey
fractions and their connection to Diophantine approximations and Riemann
hypothesis, see [10] 29, [45].

Sums of the form > f(b,d) over Farey pairs ¢/d, a/b € Farey,, have been
studied in many works, including [16], [37] ([4] pp. 110-112), [42], [17], [40],
[28], [22], [41], [33], [18], [19], [2], [15], [9], [8] for various functions f. Our
formulas can also be interpreted as sums over Farey pairs. However, in con-
trast to previous works where the summands depend only on denominators
b,d, our terms also involve numerators a, ¢, leading to new identities.

As a particular example, consider the following function f(a,b,c,d) for
two consecutive Farey fractions c¢/d, a/b:

2)  flabed) =Va2+ b2+ Ve +d—/(a+c)?+ (b+d)?
measuring the defect in the triangle inequality for the triangle with vertices
(0,0), (a,b), (a+c,b+d).

In the past, motivated by tropical sandpile caustics [26] (see further ex-

ploration of tropical caustics in [34]), together with M. Shkolnikov we had
evaluated the sum of f over SL,(2,7). We obtained the following result:

Theorem 1 ([27]). The following two formulas hold:

N
(3) Z(\/a2+b2+ Ve +d? - \/(a+c)2+(b+d)2) =2,

+ 2
(4) Z(\/a2+b2+\/c2+d2— \/(a+c)2—|—(b—|—d)2) =2 1/2.

To derive these formulas, we may consider a unit circle in R?, then iter-
atively draw certain tangent lines and sum up the areas of triangles formed
by these tangent lines. Choosing other initial curves, in this article we get
more formulas such as (the case of cycloid). We present the general con-
struction for an arbitrary concave function g in Theorem [2| Although this
result appeared (in different notation) in papers [27] 25] its proof is recalled
in Section [2| and yet another proof is given in Section [f] via telescoping.
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In this article we explore the applicability of our summation method and
investigate the role of Legendre duality.

In Section 3| we derive formulas similar to Theorem [I]for parabolas, and for
various other functions (including the cycloid, ) in Section 4l Section
contains several proofs of error-sum-like identities for continued fractions.
Raising the terms in the above summation formula to the power s we obtain
a function F,(s). In Section |§| we use the Legendre dual function to simplify
the estimates and prove convergence of Fy(s) for s > 2/3. Section [7| reveals
the connection between our formulas and Hata’s results, we also prove a
theorem about mixed area inspired by Hata’s example for the case of Euler—
Mascheroni constant ~.
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2. FORMULAE FOR THE AREA AND SL(2,Z)-LENGTH
In this section we define the terms fy(a,b,c,d) and recall the geometric

+
meaning of Fy(1) and Fy(2) for the function Fy(s) = 3 fq(a,b,c,d)*, see
Figure [1}
Consider a graph of a strictly concave continuous function g : [z, x1], i.e.
; <:r ;r y) ) ;rg(y)

Suppose that g is differentiable on [z, 1), ¢'(x9) = 0 and the tangent line to
the graph of g at ;1 is vertical (¢'(z] ) = —00), see Figure [1| for illustration.

for T,y € [.130,[[,‘1],"]3 7& Y.

Definition 1. A g-triangle is the curvilinear triangle with three vertices
(20, 9(20)), (@1, 9(x0)), (21, g(w1)) where (z0, g(20)), (21, 9(w1)) are connected
by the graph of g and two other sides are horizontal and vertical straight in-
tervals.

Given a g-triangle, each primitive vector (a,b) € ZQ>07 determines a tan-
gent line L, for the graph of g, such that L, is orthogonal to the vector
(a,b) and intersects the two straight sides of this g-triangle. Let the equation
of L, be

ax + by — vap = 0.
At the point (24p, g(xap)) Where L, touches the graph of g (this point is
unique since g is strictly convex), L, has the following form:

__g ’Ya,b
(5) y@) = -3 o+ 2L,
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s0 ¢'(xqp) = 52

A B
c
S W
i) I

F1GURE 1. The graph of g is the curve from A to C. ABC
is a g-triangle. The gray triangle is the triangle A, . q for
(a,b) = (1,0), (¢,d) = (0,1),(a+¢,b+d) = (1,1). The area
of Agpcd is %fg(a, b,c,d). The area of the g-triangle, i.e.,
the region which is filled with parallel lines, is %FQ(Q), while
F,(1) is |AB| + |BC.

Given g, define fy(a,b, c,d) in the following way: for two primitive vectors
(a,b),(c,d) € Z220 with ad—bc = 1 draw the tangent lines Lq p, L¢.d, Latc,ptd;
given by equations

0 + by — Yoy = 0
et + dy —Yea = 0
(CL + C).T + (b + d)y — f}/a—‘,-c,b—l-d =0.

The graph of g lies in the intersection of the half-planes where these functions

are non-positive.
Define

fg (CL, b7 Ca d) = V QSa,b,c,da

where S, .4 is the area of the triangle bounded by Ly, Le g, Loycpra- De-
note this triangle by A, p ¢ q:

ar +by — Yap <0
cr+dy —veqa <0
(a + C)x + (b + d)y - ’VaJrc,ber Z 0.

The vertices of this triangle are
(712, ¥12) =(dVap — bVe,ds AYe,d — CVarb)

(w13, y13) =((b+ d)Vab — WVarebrds WYatebrd — (@ +¢)Vap)
(w23, 923) =(dVateptd — (@4 €)Ved, (@4 €)Ved — CYap)-
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So 2Sa,b,c,d is

|(z13—712) (y23—y12) — (223 —712) (Y13 —y12))| = |(be—ad)|(Ya,p+Ved—Vateptd)-

Since ad — be = 1 we have

(6) fg a, b ¢, d =V 2Sa b,c,d = Ya,b + Ye,d — Ya+c,b+d-

The terms f(a, b, ¢, d) in (2)) in Theorem [I] correspond to the choice g(z) =
V1 — 22, i.e., when the graph of g is the upper arc of the unit circle centered
at the origin. Indeed, for this circle the tangent line L, is given by

ar +by — Va2 +0v2=0
S0 Yap = Va? + b% which explains the definition of f(a,b,¢,d) in (2) via (6).

Definition 2 (Zeta function for a g-triangle). Define
+

Fy(s) = (fo(a,b,c,d))*.

The name ‘zeta-function’ is suggested by Mikhail Shkolnikov. As shown
in [27], when g = v/1 — x? (the unit circle arc), we have F ;—>(1) = 2 and
F g==(2) = 2 — m/2. Moreover, the series F ;—=(s) converges if s > 2/3
and diverges at s = 2/3. For an arbitrary strictly convex g the function
F,(s) has the same behavior at s = 2/3 as we prove in Theorem

Theorem 2 ([25]). Assume g is concave, continuous on [xo,z1], C' on
[z0,71) and ¢'(x]) = —oc, then

+
(7) Fg(l) = Z |'7a,b + Ve d — ’Ya—&-c,b—i—d‘

equals the sum of the lengths of the two straight sides of the g-triangle (i.e.,
|AB| + |BC| in Figure[1]), while

J’_
(8) FQ(Q) = Z(Va,b + Ye,d — 7a+c,b+d)2

equals twice the area of the g-triangle.

Proof. The proof of this theorem is the following geometric cut-and-paste
computation. The triangles A 4, corresponding to terms in Fy(2) tile the
g-triangle, i.e. they fill the region between the graph of g and the tangents
Lo, Lo, see Figure Since each term in F,(2) equals twice the area of
the corresponding triangle A . 4, we conclude that Fy(2) equals twice the
area of the g-triangle.

The geometric interpretation of Fy(1) is as follows. Consider SL(2,Z)-
invariant length of the straight intervals of rational slope; sometimes it is
called the lattice length.

Definition 3. The SL(2,7Z)-length (or the lattice length) of an interval I
of rational slope is equal to the usual Euclidean length of I divided by the
Euclidean length of the primitive vector in the direction of I.

This notion of length is invariant with respect to the action of SL(2,7Z)
and parallel translations. Note that each of the triangles A, .4 may be
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brought to the triangle (0,0), (x,0), (0, 1), > 0 by the SL(2,Z) action fol-
lowed by a translation, so Agpcq is SL(2,Z)-equilateral triangle with the
sides of SL(2,7Z)-length p equal to fy(a,b, c,d). So, we start with SL(2,Z)-
length of the polyline AB + BC which is equal to |AB| + |BC| since the
primitive vectors in the horizontal and vertical directions have length one.
Then, each time a triangle A, .4 is carved, the polyline gains one more
side and its SL(2,Z)-length decreases by f4(a,b,c,d). Then, if a concave
polyline tends to a strictly convex curve, then the sequence of SL(2,7Z)-
lengths of polylines tends to zero, because the Fuclidean lengths of poly-
lines is bounded; and a part of it, which tends to zero, is divided by short
primitive vectors, and other part is divided by long primitive vectors (see
Definition [3); hence it also tends to zero. Therefore, Fy(1) is equal to the
SL(2,Z)-perimeter |AB| 4+ |BC| that we started with. O

In a sense, this method of computing the area is dual to Archimedes’
approach for the area under a parabola: Archimedes filled the area beneath
the parabola using inscribed triangles with vertices on the parabola, while
here we carve triangles out of the complement to the curve, and the lines
containing the sides of triangles are tangent to the graph of g.

Remark 1. Note that our construction is SL(2,Z)-invariant. So, instead of
Z;) € SLy(2,Z), we may
begin with a similar curvilinear triangle whose two straight sides belong to
lines ax + by + Y4 = 0,cx + dy + 7cq = 0, then we cut a triangle by the
tangent line (a + ¢)x + (b+ d)y + Yatcp+d = 0, ete.

a g-triangle how it was defined above, for each

Actually, for our construction we only need any piece of strictly convex
curve I' : [0,1] — R? such that the triangle formed by tangents to I' at
I'(0),I'(1) and the interval I'(0)I'(1) contains I'.

Definition 4. For a strictly conver curve I : [0,1] — R2, the triangle with
vertices I'(0),I'(1), and the intersection C' of the tangents to I' at I'(0) = A
and I'(1) = B is called the support triangle of T', if it contains I'. The
curvilinear triangle with sides AB, BC and I' is called a T'-triangle.

Then we choose equations ax + Sy — 110 = 0,z + 'y — 9,1 = 0 of
af
O[, B/

of the halfplanes where these equations are non-positive.

tangents at A, B such that det ) =1, and I" belongs to the intersection

+
Definition 5. Given the above choice, define Fr(s) =Y fr(a,b,c,d)® where
fr(a,b,c,d) is \/2Sqp.ca and Sqpca is the area of the triangle formed by

three lines tangent to I, given by
(ac + ba')z + (aB + bB )y — Yap <O
(ca+ da )z + (cB+dp)y — Ye,d <0
((a+c)at (b+d)a )z + ((a+c)B+ (b+d)B) = Yarep+d = 0.

This definition is equivalent to Definition 2| for « = 8/ = 1,0/ = 8 =
0. Define the SL(2,Z)-length of AB as its Euclidean length |AB| divided
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by /a2 + 42 and the SL(2,Z)-length of BC as its Euclidean length |BC|
divided by /«a'2 + 2. Then we have the following theorem, whose proof is
identical to that of Theorem [2

Theorem 3. Consider a I'-triangle, then

+
(9) FF(l) = Z |’7a,b + Ye,d — 'Ya+0,b+d‘

equals the sum of the SL(2,7) lengths of the two straight sides of the I'-
triangle, while

+
(10) Fr(2) =) (Yab + Ved — Yaterd)’

equals twice the area of the I'-triangle.

3. MORDELL-TORNHEIM SERIES

In this section we study in detail the formulas for parabolas that can be
obtained using our method. The computations for other classical curves are
presented in Section [4]

Consider the parabola

y:l—(.’ﬂ—y)27

and take the portion of its graph between the horizontal and vertical tangent
lines. This portion correspond to the graph of the function

20 — 1+ b —4x
y=g(z)= 5 :

By direct computation, the tangent line ax + by — v, = 0 for this g has

2
’}/g,’b = 4(Z+b) +a+ b and

1
a+c)2b+d)?(a+b+c+d)?

Yab T Ve,d — Yatep+d = 16(

Hence, by Theorem
+ + 1
— 2 = -
E ('Ya,b +’Yc,d 'Ya+c,b+d) E 16(a+c)2(b+d)2(a+ b—l—c—i— d)2

1
=2(5/4-1/4 — /3/4(y+ V1—y)dy) =1/48.

+ 1

Z4(a+c)(b+d)(a+b+c+d)

=5/4—1+1-3/4=1/2.

Note that the vector (a 4+ ¢,b+ d) = (m,n) can be any primitive vector
in the first quadrant except (1,0) and (0, 1), so this expression can also be
written as

+
1 1
> - S a1
(a+c)2(b+d)2(a+b+c+d)? m2n?(m + n)?

(m’n)zl’
m,n>0
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and
1
S e 2
(e, mn(m +n)
m,n>0
The series > m = T(s1, s2, s3) is called a Mordell-Tornheim
m,n>0

series, for Tornheim considered it in [44] to find relations between multiple
zeta values, and Mordell evaluated T'(s1, s2, s3) for s1 = s9 = s3 being even
integer in [36].
The series C(3)(s) =2° >
m,n>0
as Witten defined a zeta series for a compact semisimple Lie algebra G as

the sum of s-th powers of the dimensions of the irreducible representations
of GG, in this example %mn(m + n) being the dimension of an irreducible
representation of su(3) with the highest weights m — 1 and n — 1.
Mordell-Tornheim series are also related to toroidal b-divisors [7] where
the value of >’ W represents the self-intersection of a canonical

m2n2(
divisor of a toroidal (i.e. blown up infinitely many times P?) two-fold.

The Mordell-Tornheim series appears in the study of linear relations be-
tween multiple zeta values, [46], [I4]. It converges whenever Re s > 2/3
[32],[31]. The Mordell-Tornheim series can be presented (for different val-
ues of s) as a certain integral [30],[38]. Analyticity of the generalizations
of Mordell-Tornheim series for s € C outside a certain number of explic-
itly described hyperplanes is proven in [35]. The residues at s = 2/3,s =
1/2—k, k € Z> are explicitly evaluated in [43]. Therefore, in this case Fy(s)
is an analytic function on C with known set of poles. It would be interesting
to connect the estimates of lattice point counting under a parabola to zeros
of Fy(s).

For completeness, we show

— 1 s also called the Witten series,
msn®(m+n)

Lemma 1. The function
1
w(S) = mzn;l msns(m + n)s
converges for s > 2/3 and diverges at s = 2/3.

Proof. Consider the half of the sum where m > n. Fix m. Then, for
2/3 < s <1 we have

1 /m 1 —2s /1 1
E _— =~ — & m _
2 ns(m +n)s 1 x%(m+ )’ o t5(141)8
Therefore,
1
~ 1-3s

E _— =~ E m- 0%

St msns(m + n)s —

which converges for s > 2/3 and diverges at s = 2/3. O
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4. HYPERBOLA, CYCLOID, TRACTRIX, AND ASTROID

In this section, we describe the summation formulas obtained from differ-
ent classical choices of the function g, such as hyperbola, cycloid, tractrix,
and astroid.

Consider the portion of the curve y? — (z — 2y)? = 1 between the points
where it has a horizontal tangent line and a vertical tangent line, let this

serve as a function g. In this case, v, = —1/(2a + b)? — a? and the associ-
ated series is

n
Z(\/(2a+b)2—a2—|—\/(2c—|—d)2—62—\/(2a+2c+b—|—d)2—(a+0)2)2:

-1 1
:—2/ (2y+ V2 —1+V3) =3 +2vV3 4.
,2/\/§

This can also be rewritten as
Z (\/a2 — 2+ VER -2 —\(a+c)? - (b+d)2)

over an appropriate subset of SL(2,Z) (a > 2b,¢c > 2d), which can be
regarded as the hyperbolic analog of .

Cycloid. Consider the segment of cycloid curve defined parametrically
by (x(t),y(t)) = (¢t —sint,1 — cost) between points where the tangent is
horizontal and vertical. Then

2 _ 12

Yab = Q- arccosa + 2b

a? + b2
and the associated summation develops as

+

Z a arceosu + c arccosu — (a + C) arccos (a + 0)2 — (b + d)2 2 .
a? + b? 2+ d? (a+c)2+(b+d)?)

Here, we explicitly computed the area of the corresponding g-triangle.
Equivalently,

+ 2
a c a+c
4 E <a . arctan(g) +c- arctan(g) —(a+c)- arctan(b " d)> =

Note that arctan(y) measures the angle between the vector (a,b) and y-
axis; hence this identity may be viewed as a “weighted angle version” of

2)-
Tractrix. Consider the tractrix curve,
y(@) =V1-a?—

defined on the interval [—1,0]. Then 7,5 = bln(va? + b%) — blnb and the

corresponding sum becomes

i 1++vV1—22
por V-
x

2

+ V& +2°VeE + a2 (b + d)bH

Z ln( o 25+d +IHW = T.
Via+e)?2+(b+d)



10 NIKITA KALININ

Astroid. For the curve 22/3 4 42/3 = 1 we obtain 7, = \/a‘;bﬁ and so

ha ab ed (a+c)(b+d) ’ B
2. (\/a2 T VET D Viatre2rb+d?) 3m/16

ha ab cd (a+c)(b+ d) B
2 <\/a2+b2 N Va+e2+b+d?) _2'

5. IDENTITIES FOR ERROR SUMS OF CONTINUED FRACTIONS

The topic of continued fractions is rich and classical, but it seems that we
found certain new and simple identities that might be included as exercises
in textbooks.

Let a be an irrational real number. Consider a simple continued fraction

1
aOGZ,anEZZO, o =ag+ 1 :[ao,al,...]
ay + . 1
a
2 as + ..
Define
(11) hoo=0 h_1=1 h,=a,hp_14+hn_os
(12) ko=1 k_1=0 k,=ank,_1+k,_o.
Th ! = = n and I
en ap+ . —[ao,al,...,an]—k—nan moa
al + 1
az + 1
az+ ...+ —
Gn,

The following identity is stated in [27] without a proof (and with a typo),
here we will provide three proofs of it.

Theorem 4. If « is an irrational number, then the following identities hold:

o0 o0

a) Z an—i—l’hn - akn| =+ 1, b) Z an+1(hn — Oékn)Q = (.

n—=—— n——

If « =p/q = hn/kn with ged(p,q) =1, then

N-1 N-1
c) Z ant1lhn — aky| =a+1—1/g, d) Z ap+1(hn — ak:n)2 = a.
n=-—1 n=—

First proof. Carving. Note that the proof of Theorem [2] relies on support
lines; we do not actually require tangency since the construction involves
cutting triangles and computing changes in area and SL(2,Z) perimeter.
We only require that for every (a,b), there exists a unique support line
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with equation ax + by — v, = 0 and then employ the numbers 7, ;. Let
us apply this procedure to the triangle A, with vertices (0,0), (1,0), (0, @)
where o > 0 is an irrational number. In this case the g-triangle is the
triangle DC'B in Figure

A B

FIGURE 2. The first few steps of our procedure consists of
cutting DCC1, then DC1Cs, then BCyB;.

Note that v, , = maxa, (pz + qy) = max(p, ga).

Then, if Ya,b = 4y Ye,d = € then Yatc,b+d = A+ C and Ya,b+Ye,d — Vate,b+d =
0. So, to get a non-zero term we should have, for example,

Ya,b = A Ve, d = do, Yateb+d = &+ CVab + Ye,d — Yateb+d = do — c.

So, it follows from the geometric continued fractions algorithm (“nose
stretching algorithm”, a term introduced by V.I. Arnold [5], who learned it
from B.N. Delaunay), used to construct continued fractions geometrically,
then such (¢, d) is a convergent (hy,, ky) for certain n and the number of pairs
(a,b), such that V44 + Ye,d — Vatebt+d 7 0 is equal to the coefficient ap1
(and these (c,d) correspond to the intermediate convergents). Thus, each
term |h,, — ak,| appears a,y1 times as Yop + Ye,d — Vate,p+d, thus proving
formulas for the area > an41(hyn — aky)? which is equal to « (twice the area
of the triangle BCD in Figure .

The formulas a), c¢) are proved similarly: when « is irrational, the SL(2,7Z)
length (Definition [3)) of the polyline in construction tends to zero, so

oo
> antilhn — okn| = a+ 1.

n=-—1

When a = p/q is rational, the process to get the formula c) finishes in a
finite number of steps and the SL(2, Z)-length of the hypotenuse is 1/¢q. O

Remark 2. The above geometric process is equivalent to the following geo-
metric Euclidean algorithm. Start with a triangle ABC such that the angle
at A is right. The step of the algorithm: if |[AB| > |AC|, subtract |[AC| from
|AB| forming a new triangle AB’C, such that |B’B| = |AC|; if |AB| < |AC|,
do a symmetric operation. Then apply the step of the algorithm to the new
triangle. Then the areas of the carved triangles are exactly |h, — aky|?/2
and each such triangle is carved a1 times.
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Second proof. Induction. We start by rational case. One can directly check
identities for a« = ag or @ = ag + i Then we proceed by induction.

Suppose o = ag + % Note that 8 = [a1,...,an]. Then
hn(a) kn—1(5)
Fala) " " i (B)

hn(a) - kn—l(ﬁ) + a()hn—l(ﬂ)7 kn(a) - hn—l(ﬁ)a S0

1+ Ba Ry

(@)= (@) = -1 (B)Hona(8)= - (8) = by (8) )
Thus,
N-1 N-1

1 1+
Z an—&-l‘hn_akn‘ =ap+— Z an—&—l‘hn—l(/@)_ﬂkn—l(ﬁ)‘ = aO"”J = 1+a.
n=-—1 ﬁ n=0 ﬁ
The sum for squares are obtained similarly,
N-1 1 V-l 3
> aniilbp—aks|? = W+ 5 > ansilhn-1(8)=Bka-1(8)] = dot g3 =
n=-—1 n=0

The irrational case follows by taking the limit of the rational case. If § is
an irrational number then the coefficients a,, (8) and convergents hy,(3), kn(5)
are the limits of the corresponding coefficients and convergents for rational
numbers « such that o — 3, and

N-1 N-1
o}kiglﬁ Z ant1(ag)|hn(ag) — aky(ag)| = Z an+1(8)hn(B) — akn(B)].
n=—1 n=—1

O

Third proof. Telescoping. We prove the identities for the irrational case, the
rational case can be proceeded in the similar way. Define the (signed) ap-
proximation error

en = hy — aky, On = lenls n> —2.

It follows from that e,41 = ant16n + €n—1, thus taking into account
the alternating sign of €,, we see that for every n > —1,

an+15n =0p—1— (5n+1~

Summing it from n = —1 to N we obtain

N
Z An+10n, =0_2+0_1 —ON — On41-

n=-—1

Because oy — 0, letting N — oo yields

o
Z Ung10p =0_94+0_1 =a+1.

n=-—1
To compute the second series, multiply the relation €,41 — €p—1 = apy16n
by e, to get

2
n+4+1€y = Enn+l — En—1En.
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Summing it from n = —1 to N:
N
} : 2
Ap+41€, = ENEN+1 —E—2€_-1.

n=—1

Since ey — 0 we conclude

[o.¢]
E an+1€i = —€_96_1 = Q. O

n=-—1

It is not difficult to prove similar identities for general continued fractions,
or for continuous fractions over p-adic numbers or power series, or even
multidimensional continued fractions.

Remark 3. The error-sum functions
(o) o0
Bi(a) =) |hn—akn|,  Eax(a) = |hy — aky|?
n=0 n=0

were studied systematically in [39], there are closed formulas for the Eu-
ler constant e = 2.71828... in [3, I3], and for quadratic irrationalities in
[11]. Ahn recently transferred the question to Pierce expansions (which
have different combinatorics) and obtained fractal-dimension results [I]. In
[6] “split-denominator” variants were introduced. In [12] by studying the
integrals of the error-sums certain relations between ,log(2), ((3),¢(5),...
are discovered. Our formulas comprise the errors for the intermediate ap-
proximants. However, we do not know how our results might be useful for
that direction, besides that one can probably find explicit formulas for

Ep(@) = |hn — aky|P,p > 3

n=0

for quadratic irrationalities «. It would be very intriguing to find

0o
Z an+1|hn - ekn‘g-

n=-—1

6. LEGENDRE TRANSFORM

Recall that a function ¢g* is called the Legendre transformation of g if the
equation of the tangent line of the slope « to the graph of g is given by
y(x) = az — g*(a).

Remark 4. Observe in that —* = g*(—%) where g*(a),a € (—o0, 0]
is the Legendre transform of g. Consider a g-triangle. Then

Lemma 2. Suppoer that g € C3(—00,0]. Up to terms of higher order

(9)"(—552)

Ya,b + Ve, d — Yatep+d = m
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Proof. Indeed,

o <—z:;)—bg< - () -

ol (55a) - }w[g*(—gj;)—g*(_;)%

2

ol (55 vt b (55 (o)

o1 (552) w107 (55) () |-
=2@w"< ZI;)'&u;+@

Theorem 5. Consider a I'-triangle, given by a strictly concave function
g :[0,1] = R with ¢'(0) = 0,4¢'(1) = —1. Then Fr(s) converges for s > 2/3
and diverges at s = 2/3.

+

O

Proof. Since g is strictly concave, (¢*)” is separated from 0 on [0, 1]. It fol-
lows from Lemmathat the terms of Fr differ by at most constant (depend-
ing on maximum and minimum of (¢*)” on [0,1]) from the corresponding
terms m in w(s) for a parabola, which has the desired behavior at

s =2/3, see Lemmall O

Hence, we have the same convergence behavior for any I'-triangle with a
strictly convex curve T'.
Next, we reprove the Theorem [3| using a telescoping argument as follows.

Proof of Theorem[3. Without loss of generality, consider a I'-triangle given
by a concave g : [0,1] — R with ¢’(0) = 0,¢'(1) = —1, such that the vertex
of the I'-triangle, which is not on T', is the origin (0, 0).

Start with @ Note that a certain telescoping is apparent, for we can
define

[e.o]

L
Sa+c,b+d = E (’Ya—&-c,b-l—d + Yn(a+c)+a,n(b+d)+b — 7(n+1)(a+c)+a,(n+1)(b+d)+b) =
n=0

= lim (7 Yateprd T Yab = Ina+otan(brd)+b) =

= lim <n(b+d)g*(—b+d)+bg*(—b)—(n(b+d)+b)g*(—

n—oo

a+c a n@+®+a0

(7D D) ) )

Similarly we define

o0

Sf+c,b+d = Z('Ya+c,b+d * Vn(a+c)+en(b+d)+d — 'Y(n+1)(a+c)+c,(n+1)(b+d)+d) =
n=0
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. C . a+c 1 wy, atc
(7D -0 - ) )

Observe now that Sf+c7b+d + S£+C,b+d = Ya,b T Ve,d — Yateb+d- Lhus,

+
Z(%,b + Ved = Vatebrd =S = Z (Sf—i—c,b—i—d + S£+c,b+d) )

where the last sum runs over all primitive vectors (a + ¢,b + d) € Z%,
such that a + ¢ < b+ d. Finally, note that

S = Z (Sf+c,b+d + Sc%+c,b+d) =25 — ((9*)/(_1) - (9*)/(0))7

so S = (g%)"(0) — (¢*)'(1). Since the vertex of the I-triangle is the origin, it
is easy to see that (¢*)'(0) — (¢*)'(1) is the SL(2,Z)-length of two straight
sides of the I'-triangle.

To prove we need to perform telescoping for

plabesd) = (0l (=)~ o) - LD Y a6y

because, as one can verify,

1
p(a,b,c,d)—pla+c,b+d,c,d)—p(a,b,a+c,b+d) = 5 (Yap+e,d _7a+c,b+d)27

thus
1
Z Q(Va,b + Ye,d — ’7a+c,b+d)2 = p(17 17 07 1) - nhanolo Zp(aa b7 ¢, d)

where F), is the Farey series of order n. By a direct computation,

a

Soabed =3 w4 (5) —0-9)

so the last sum is a Riemann sum for ff)l((g*)’)2 for 7 is the length of the
interval [—%, —<]. Then, p(1,1,0,1) = (¢g*(—1) — g*(0))?, so

0

(Yab + Yeud — Varenrd)® = / ()~ (6" (1) = " O

DO | =

N
13
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7. CONNECTIONS TO HATA’S WORK

In [19], Masayoshi Hata had developed a method to derive summation
identities involving Farey fractions using a piecewise linear Schauder ba-
sis. His approach leads to several classical and new identities, including
an interesting formula for Euler’s constant v that we discuss below. The
construction uses Farey pairs and associated fundamental intervals. Inter-
estingly, his approach is equivalent to ours, up to Legendre transform. Below
we recall Hata’s definitions and results and show how to rephrase them in
our language.

To get the notation straight, suppose that we consider a I'-triangle such
that the tangent at I'(0) has slope 1 and the tangent at I'(1) is horizontal.
Thus, the possible slopes of tangents belong to [0, 1].

Farey intervals and Schauder bases. Let F' be the set of pairs of
consecutive Farey fractions in [0,1]. Each I = [¢/d,a/b] € F is called a
fundamental Farey interval, ad — bc = 1.

Remark 5. Note that elements of F bijectively correspond to elements in
SLy(2,Z) withb>a and d > c.

To each interval I = [¢/d, a/b], Hata associates a Schauder base function:

b —|— d
Si(x) = —— (la —bx| + |c —dz| — |a+ ¢ — (b+ d)z]|).
The function Sy is supported on I, continuous, piece-wise linear, zero outside
I, and has unit Lo, norm. The collection {S7};cr is a Schauder basis for
([0, 1], in the sense that every f € C[0, 1] admits a unique expansion:

(@) = £(0) + (f(1) = FO)z + D er(f)Si(x)
IeF
The coefficients c¢;(f) can be explicitly found:

=5 (5ra) - 5rat () - 5at (3

Remark 6. These functions S7(s) were known also to H. Montgomery and
J. Hubbard and play a major role in a thesis [20] about metric number
theory, where, in particular, a number of results were derived from the fact
that the derivatives of S form a complete and orthogonal basis and complete
system of martingale differences for L2([0,1]), [21].

Parseval-type identity. One of Hata’s key results is a Parseval-type
identity for these coefficients [19, Corollary 3.4]: For any f € C?[0,1],

1
(14) > b+ d)Pe(f) = / (f'(2))? dx = (f(1) = f(0))%.
I€F 0
This result mirrors the classical Parseval identity in Fourier analysis.
Following Hata’s work [19], our formulas can be interpreted as Parseval-
type identities for due to Remark |} if I = [§, 7] and f = g%, then
Yab T Ve,d — Yatep+d = (b + d)C[(f)
Hence the above formula is equivalent the part in Theorem [2| for
the area and we proved it in Section |§| as .
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F1GURE 3. The first few steps of constructing c; for I =
0,1],[0,1/2],[1/3.1/2].

Consider [19, Theorem 5.3]. For any f € C?[0,1] we have
S+ d)er(f) = £1(0) - (1),

IeF

Due to Remark [4] this formula is equivalent to the part in Theorem |2[ for
the SL(2,Z)-perimeter (and we proved it in Section [6]). Note that the sum
does not depend on the behavior of f inside [0, 1] once we fixed f'(0), f'(1),
similarly depends only on two straight sides of a g-triangle.

Application to Euler’s constant. Another useful identity is [19, The-
orem 3.3]: For any f € C[0,1], g € C?[0,1] we have

(15) > (b+d)er(ferlg) =

IeF
1
= f(1)g'(1) = f(0)g'(0) — (f(1) — f(0))(g(1) — 9(0)) — / f(2)g"(z) dx.
It has an immediate Corollary [19, Corollary 3.5]: For any f € C[0, 1],

(16) —2/f Jde — £(0) — £(1).

IeF

This can be seen on Figure [3| (where f(0) = f(1) = 0) for the area of each
small triangle is equal to 74, and the sum of the areas in the integral under

the curve. Let
o=+ (- {).

where {z} denotes the fractional part of x. Hata shows that for all Farey
intervals I = [a/b, c¢/d] except intervals [0, 1/n], one has:

1
erv) = acla+c)(b+d)’

! 1
| @ =53,

It turns out that:
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where 7 is Euler’s constant. Applying , we obtain the formula:

! oal) 7
2 [ (e de - e RO
Since 9 (0) = (1) = 0, this becomes:
1
20 -1/2)= ) abed(a+c)(b+d)’

IeF
Thus:

Theorem 6 ([19], Theorem 4.1). Euler’s constant vy satisfies:

1 1 1
T=3 5 3
22 b%; abed(a + ¢)(b+ d)
ged(b,d)=1
b>2

where the sum runs over Farey intervals I = [a/b,c/d] € F with ad—bc = 1.

We derive a short telescopic proof of the above formula in [23] and derive
it from more general theorems about summing over topographs in [24].

Identities arising from mixed areas of triangles. The identities
, can be reinterpreted as mixed areas using the following theorem,
inspired by Hata’s framework:

Theorem 7. Let g1,g2 be two concave functions as in Section [3, and let
Yap and b4y be the coefficients of the supporting lines ax + by = 7,5 and
ax + by = 64y for the graphs of g1 and g2, respectively. Then,

+
Z(%,b + Ye.d — Yateprd)(Oap + Ocd — Oateprd)

s equal to the mized area of the gi-triangle and the go-triangle.

Proof. Let X denote the Minkowski sum of the g;-triangle and the scaled
go-triangle, € - go. Then X is again a g-triangle for some function g, whose
support function in direction (a,b) is given by
ﬁa,b = Yab T+ 6(Sa,b-
Hence, applying the area formula from Theorem [2| we compute:
+

Area(X) = % Z(ﬁa,b + Bed — Baterd)’-

Substituting 8,5 = Va,p + €0qp, We obtain:
Jr

1
Area(X) = 5 Z (Yap + Ved — Yatebrd + €Bap + Oed — Sareprd))’ =
+

1
- 5 Z [(/Va,b + Ye,d — 7a+c,b+d)2 + 52 (5a,b + 5c,d - 5a+c,b+d)2
+2€(Ya,b + Yed — Vatebpt+d) (Gab + 0c.d = Sateprd)] -
Thus, the coefficient of € in this expression is

+
Z(’Ya,b + Ve, d — ’7a+c,b+d)(5a,b + 5c,d - 5a+c,b+d)a
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which equals the mixed area of the g;-triangle and the go-triangle, as desired.
O

Remark 7. So the Hata’s formula is obtained when we take two parabo-
las y = 22 and z = 32. One considers multiple I'-triangles which curvi-
linear sides are segments of parabolas corresponding to slopes in intervals

[ 2ln=1,2,....

I am grateful to the University of Geneva, where this work was initiated,
and to Misha Shkolnikov and Ernesto Lupercio for inspiring discussions.
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