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0 Preface

From a cup of coffee, a spoonful of coffee is poured into a cup of milk. Then a
spoonful of the resulting mixture is poured back into the cup of coffee. Which
is greater: the amount of milk in the cup of coffee or the amount of coffee in
the cup of milk?

This course is intended for first-year students in mathematics and computer sci-
ence; they have to learn how to read and write proofs.

It is not obvious at all why we need to prove something (professors demand it,
but why?). The truth is that by proving we understand things better and discover
new beauties (e.g., the formula 13 +23 + -+ n® = (1 4+2+ .. + n)?).

So, to reconcile the concept of proof with students, it is better to introduce proofs
in questions whose answers are not obvious and are debatable. Examples logic puzzles,
games (who has a winning strategy?), impossibility proofs (e.g., tiling a chessboard
missing opposite corners with dominoes), and induction. These topics occupy the
first few lectures.

How do you learn to prove? Let us use the metaphor “Mathematics is a language”.
When you learn a foreign language, you have different activities: listening, speaking,
reading, writing. The same is true for mathematics. To study it, students should
spend time reading and writing mathematics, listening to lectures, thinking about
problems, and discussing ideas.

Also, mathematicians love mathematics because proofs are beautiful!

Solution to the coffee-milk problem:

Let’s try to guess the answer. To do that, consider an extreme case (this is the
first idea). Suppose there is just one spoonful of liquid in each cup. Then after
pouring the coffee into the milk, we take the entire mixture back. The mixture will
be uniform, so the amount of coffee and milk will be equal. Will it always be equal?

Since one spoonful was poured “there and back,” the total volume of liquid in each
cup did not change (this is the second idea).

Therefore (the third idea), the amount of coffee lost equals the amount of milk
gained.

The volumes of coffee and milk in the cups can be different, you can pour the
spoon back and forth ten times, you can even stir the mixture poorly — it doesn't
matter: the amount of milk in the coffee will always equal the amount of coffee in
the milk!



0.1 :: on collaboration and the use of Al

Collaboration. You are encouraged to discuss problems with classmates: compare
approaches, explain ideas to one another, and ask for critique. Explaining your rea-
soning often reveals subtleties and gaps that you can then address. However, each
student must write up their own solution independently, in their own words, after any
discussion. Do not share written solutions or allow others to copy your work.

Attempt first. Before seeking help from classmates or Al tools, make a genuine
attempt on each problem: write down an outline, partial calculations, or a strategy
you tried (even if it failed). Learning to prove requires practice—like training for a
sport—so expect to try, err, and revise.

Al: permitted uses. You may use Al tools to: (i) spot logical gaps or unclear steps
in a solution you have already written, (ii) improve clarity and writing style, (iii) receive
high-level hints about relevant definitions or theorems. When you do so, begin with
your own draft (typed or a photo) and ask for feedback on that draft.

Al: not permitted uses (unless explicitly allowed). Do not ask Al to produce full
solutions for graded assignments or to translate someone else’s solution into “your
own words.” Do not paste problem statements and accept verbatim answers. Use Al
as a reviewer, not as an author. If you are unsure whether a use is allowed, ask the
instructor.

Reflection Logs. It is useful to reflect on how you use Al, so record the tool and
its purpose in your diary, and then track how it affects your understanding and your
ability to solve problems, write solutions, and read material without any outside help.
Note that during the exams or midterms you cannot rely on anything except yourself.

Academic integrity. Copying another person’s solution or submitting Al-generated
solutions as your own is plagiarism. Violations will be handled under the university's
academic integrity policy.

0.2 :: credits

The first chapter consists of edited Al-translated excerpts from the excellent book (in Russian) of Kanel-Belov and Kovaldgi "How to solve

non-standard probelms" https://old.mccme.ru/free-books/olymp/KanKov.pdf



1 Methods of proving
1.1 :: parity, induction
1.1.1 :: :: parity
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Many problems become much easier once one notices that some quantity has a
fixed parity (it is always even or always odd). Once a parity is fixed, any situation in



which that quantity would have the opposite parity is impossible. Sometimes one has
to construct this quantity, for example by considering the parity of a sum or product,
by pairing objects up, by noticing an alternating pattern, or by colouring objects in
two colours.

Example 1. A grasshopper makes jumps of length 1 m along a straight line and
eventually returns to its starting point. Show that it made an even number of jumps.

Solution. If the grasshopper ends where it started then the number of jumps to
the right must equal the number of jumps to the left. Consequently the total number
of jumps is even.

Example 2. Does there exist a closed broken line with seven segments that crosses
each of its segments exactly once?

Solution. Suppose such a broken line existed. Any two crossing segments can
be paired. The number of segments must therefore be even, which contradicts the
assumption that there are seven segments.

Example 3. Martians may have any number of arms. One day all Martians joined
hands in such a way that no free arms remained. Prove that the number of Martians
with an odd number of arms is even.

Solution. Call Martians with an even number of arms even and those with an odd
number of arms odd. Since the hands form pairs, the total number of hands is even.
The total number of hands of the even Martians is clearly even, so the total number
of hands of the odd Martians must also be even. But each odd Martian contributes
an odd number of hands, so there must be an even number of them.

Such pictures are called graphs, they consist of vertices (representing Martians)
and edges (representing a handshaking pair of hands). The number of edges incident
to a vertex (i.e. the number of hands of a Martian) is called the degree (or valency)
of a vertex.

We proved that in each graph the number of vertices of odd degree is even.



1.1.2 :: :: induction
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The method of mathematical induction is used to prove statements of the form
“For every natural number n a certain property holds.” Such a statement can be
viewed as an infinite chain of assertions: “For n = 1 the property holds”, “For n = 2
the property holds”, and so on. The first assertion in the chain is called the base
(or the foundation) of the induction and is usually easy to check. One then proves
the induction step: "“If the assertion with number n is true, then the assertion with
number n+ 1 is true.” Sometimes one needs a stronger form of the induction step:
“If all assertions with numbers from 1 to n are true, then the assertion with number



n+ 1 is true.” There is also the technique of inductive descent, in which one proves
that if an assertion with number n (with n > 1) can be reduced to one or several
assertions with smaller numbers and the first assertion is true, then all assertions are
true.

If both the base and the induction step have been proved, then all assertions in
the chain hold; this is the principle of mathematical induction.

Example 1. Prove that the number consisting of 243 consecutive ones is divisible
by 243.

Solution. Notice that 243 = 3°. We shall prove a more general statement: the
number consisting of 3" consecutive ones is divisible by 3"7. For n = 1 the assertion
says that 111 is divisible by 3, which is true. Suppose the number consisting of 371
ones is divisible by 3771, Write

11...1=11---1 x 10---010---01
— — —_
3 times 3n-1 times  a block containing only one non zero digit

It is not hard to check that the second factor on the right—hand side is divisible by
3. Multiplying a multiple of 37! by a multiple of 3 yields a multiple of 3". Therefore
the number of 3" ones is divisible by 3", completing the induction.

Example 2. Several lines and circles are drawn in the plane. Prove that the regions
into which the plane is divided can be coloured in two colours so that adjacent regions
(sharing a segment or an arc) are coloured differently.

Solution. First erase all the lines and circles, remembering where they were.
Colour the entire plane one colour. Then restore the boundaries one by one, re-
colouring the regions they divide. When adding a line, recolour in the opposite colour
all regions on one side of it and leave unchanged those on the other side. When
adding a circle, recolour all regions lying inside it and leave unchanged those outside.
In this way each time you add a boundary the recoloured regions lie on one side only.
Consequently any two neighbouring regions (sharing part of a boundary) always have
different colours.

Example 3. Prove that if x + % is an integer, then x" + % is an integer for all

XH
n>0.
Solution. Set T, = x" + X—ln Note that To = 2 and 77 = x + 1/x are integers.
Observe that



TaTi=(x"+H)(x+ 1) =x" 4 Lo+ xm g L =T+ Thon

Thus Tp41 = TpT1 — Th—1. By induction on n this recurrence shows that all T,
are integers.

Example 4. (if time permits) Five robbers have obtained a sack of gold sand.
They wish to divide it so that each robber is sure he received at least one fifth of the
gold. They have no measuring instruments, but each can judge by eye the amount of
a pile of sand. Opinions about the size of the piles may differ. How can they divide
the loot?

Solution (First method). First two robbers divide the sand between themselves:
one divides the sack into two piles that he believes equal, and the other chooses his
pile. Each of these two divides his share into four equal (to his mind) parts, and the
third robber takes one part from each. Now these three each divide their share into
three parts and the fourth robber takes one part from each. Finally these four divide
their shares into two parts and the fifth robber takes one part from each. Each robber
can check that the portion he receives is at least one fifth according to his judgment.

Solution (Second method). Find the most modest robber and give him his portion
first. To do so, ask the first robber to separate what he believes to be 1/5 of the sack.
Ask the second robber whether the separated part is larger than 1/5: if he thinks it
is larger, have him reduce it to what he considers 1/5; if he thinks it is not larger, ask
the third robber, and so on. When someone finally agrees that the separated part is
exactly 1/5, give that part to the last person who modified it. Among the remaining
robbers find the most modest of those and repeat. In the end every robber receives
a portion he believes is at least 1/5 of the original amount.

1.1.3 :: :: problems for tutorial

1. You have coins of 3 HKD and 5 HKD. Prove that any number of HKD greater
than seven can be exchanged for coins of 3 and 5 HKD.

2. Several lines divide the plane into regions. Each line grow hair on one side.
Prove that there is a region all of whose boundaries have hair “outside”. !

1Comment: Induct on the number of lines. Removing one line yields a configuration where the
claim holds; then restore the line and pick an appropriate subregion on the hatched side.



3. From a 128 x 128 square one unit square was removed. Prove that the re-
maining shape can be tiled with L shaped trominoes consisting of three unit
squares.

4. For every natural k prove the inequality 2% > k.

5. Prove the Cauchy—Schwarz inequality in the form

X1 +Xo+ -+ Xp
Z N/X1X0 " X,

n

where x1, ..., X, are non negative numbers. °

1.1.4 :: :: problems for workshop
1. Can one break 25 HKD into ten coins of denominations 1, 3 and 5 HKD?3

2. Nine gears are arranged in a circle, each meshing with the next. The first meshes
with the second, the second with the third, ..., the ninth with the first. Can
they all rotate at the same time? What happens if there are n gears?*

3. A row contains 100 towers. You may interchange any two towers that have
exactly one tower between them. Is it possible in this way to reverse the entire
order of the towers?®

4. Six numbers 1,2, 3, 4,5, 6 lie on the table. You are allowed to add 1 to any two
of them. Can all the numbers eventually be made equal?°®

2Comment: A common proof uses induction on n by first proving the case where n is a power of
two and then reducing the general case to the nearest lower power of two. This problem invites the
reader to explore that technique. See details in Section 5, page 34.

3Comment: Let x, y and z be the numbers of 1—, 3— and 5-HKD coins. Then x+3y + 5z =25
and x + y 4+ z = 10. Subtracting yields 2y 4+ 4z = 15, which has no integer solutions. Therefore it
is impossible.

4Comment: An odd number of meshed gears arranged in a cycle cannot all turn, because each
contact reverses the sense of rotation. For an even number of gears a consistent rotation is possible.

5Comment: Label the positions 1, ..., 100. A permitted move swaps the towers in positions i
and i+ 2, both of which have the same parity (both odd or both even). Consequently each tower
always occupies squares of the same parity as its starting position. In the reversed arrangement the
tower originally at position 1 would have to move to position 100 and hence to a square of opposite
parity. This is impossible, so a complete reversal cannot be achieved.

5Comment: Each move increases the sum of the numbers by 2. If eventually all six numbers were
equal to k, then 6k =14+2+34+ 4+ 54+ 6+ 2t = 21 + 2t. The left side is even, while 21 + 2t is
odd for all t. Hence the numbers can never all become equal.



5. All dominoes from the standard set are laid out in a single chain according to
the usual rule (neighbouring halves show the same number). One end of the
chain has a five. What can be at the other end?’

6. Can a line that does not pass through any vertex of an 11—gon intersect all of
its sides?®

7. On a table stand seven overturned cups. You may simultaneously turn over any
two cups. Is it possible to end up with all the cups upright?®

“Comment: In the usual “double six” set the tiles are the pairs (i,j) with 1 </ < < 6. Each
number 1, ..., 6 occurs exactly six times. Consider the graph whose vertices are the numbers and
whose edges correspond to dominoes. In this graph every vertex has even degree, so the tiles can
be arranged in a closed Eulerian circuit. Cutting this circuit yields an open chain whose two ends are
identical. Hence if one end displays a five, the other end must also display a five.

8Comment: In any polygon the number of intersections of a straight line with the sides is even
(becasue the line goes inside the polygon, then outside, then inside,... finally it goes outside). Since
11 is odd, no such line exists.

9Comment: The parity of the number of overturned cups changes by 0 or 2 at each move. Starting
with seven (odd) and wanting to end with zero (even) is impossible.

10



1.1.5 ::

Read:
Paul Zeitz - The Art

:: 1st homework

and Craft of Mathematical

The Frog Problem

+ The frog problem is a classic Russian math circle problem.

« Three frogs are situated at 3 of the comers of a square. Every
minute, 1 frog is chosen to leap over another chosen frog, so
that if you drew a line from the starting position to the ending
position of the leaper, the leapee is at the exact midpoint.

+ Wil a frog ever occupy the vertex of the square that was
originally unoccupied?

« How can we effectively investigate this problem?

Graph paper allows us to attach numbers to the positions of the
frogs. Once we have numbers, we can employ arithmetical and
algebraic methods. Thus, place the frogs at (0, 0), (0, 1), and
(1, 1). The question now is, can a frog ever reach (1, 0)?

+ Thinking about the appropriate venue for investigation is an
essential starting sirategy for any problem.

« Another investigative idea: Use colored pencils to keep track
of individual frogs. This adds information, as it allows us to
keep track of 1 frog at a time. Color the (1, 1), (0, 1), and (0, 0)
frogs red, blue, and green, respectively.

Notice, by experimenting, that the red frog only seems to hit
certain points, forming a larger (2-unit) grid.

« Some of the coordinates that the red frog hits are (1, 1), (1, 3), (1,
1), (-1, 1), (-1,~1), and (-1, -3). They are all odd numbers!

« Likewise, the blue frog only hits certain points on a 2-unit grid,
including (0, 1), (2, 1), (4, 1), and (0, —1); these are all of the
form (even, odd).

Problem Solving, pp. 13-15.

+ In general, when a frog jumps, we will take its starting

« Likewise, the green frog only hits (even, even) points.

+  On the other hand, the missing southeast vertex was (1,
0), which has the form (odd, even). It seems as though it is
impossible, but how can we formulate this in an airtight way?

+ It is often very profitable to contemplate parity (oddness
and evenness).

+ The essential reason for this is that a parity focus reduces a
problem from possibly infinitely many states to just 2.

« Parity involves the number 2. Where in this problem do we see
this number? In doubling, because of the symmetry of the way
the frogs leap. When the leaper jumps over the leapee, she adds
twice the horizontal displacement to her original horizontal
coordinate. The same holds for vertical coordinates.

+ So when a frog jumps, its coordinates change by
even numbers!

* For example, suppose the red (1, 1) frog jumps over the green
frog at (0, 0). The horizontal and vertical displacements to the
leapee are both 1 (since it is moving left and down), so the final
change in coordinates will be ~2. The horizontal coordinate
will be 1+~2=—1, and the vertical will also be —1.

+ Suppose now that the red frog jumps over the blue frog,
which is (0, 1). The horizontal displacement is +1, and the
vertical displacement to the target is +2. So the new horizontal
coordinate will be 1 (the starting value) +2 x 1 =+1, and the
new vertical coordinate will be ~1 (the starting valuc) + 2 x 2
= 3. Thus the red frog jumps from (~1, ~1) to (1, 3).

dinate and add twice the horizontal displacement to its
target. Likewise, we take its starting y-coordinate and add twice
the vertical displacement to the target. These displacements
may be positive, negative, or zero.

+ In other words, you take the starting coordinates and add
even numbers to them. But when you add an even number to
something, its parity does not change!

+ So the (odd, odd) frog—the red frog—is destined to stay at
(0dd, 0dd) coordinates, no matter what.

Write:

Suggested Reading

Polya, How to Solve It.
Zcitz, The Art and Crafi of Problem Solving, chap. 2.

Questions to Consider

1. Write the numbers from 1 to 10 in a row and place cither a minus or a
plus sign between the numbers. Is it possible to get an answer of zero?

N

. A group of jealous professors is locked up in a room. There is nothing
else in the room but pencils and 1 tiny scrap of paper per person. The
professors want to determine their average (mean, not median) salary so
that each can gloat or grieve over his or her personal situation compared
to the others. However, they are secretive people and do not want to
give away salary information to anyone else. Can they determine the
average salary in such a way that no professor can discover any fact
about the salary of anyone but herself? For example, even facts such as
“one professor eams less than $90,000” are not allowed.

Problem 1. Write the full solution (with all details) of the problem that we cannot
cut a square 4 x 4 without opposite corners into domino. Write the solution where
we use case-by-case strategy, without using coloring.

Problem 2. Write the solution of the problem that we cannot cut a square 8 x 8
without opposite corners into domino (you can use coloring).

Problem 3. Show that you can cut a square in n squares for each n > 6.

Problem 4. The numbers 1,2, ..., 101 are written on a blackboard. You are allowed
to erase any two numbers and write their difference in their place. After repeating
this operation 100 times only one number remains. Prove that this number cannot
be zero.

11



1.2 :: pigeonhole principle, correspondence, invariants

From a hundred rabbits, you can never assemble a horse;
a hundred suspicions do not consitute a proof.

Crime and Punishment, E. Dostoevsky

1.2.1 :: :: proof by contradiction

One of the most widely used techniques in elementary mathematics is the proof by
contradiction. The general strategy is to assume that the statement to be proved is
false and then show that this assumption leads to an impossibility. Having reached a
contradiction, one concludes that the original statement must in fact be true.

Example 1. Prove that there are infinitely many prime numbers.
Solution. Suppose the contrary, namely that there are only finitely many primes.
List them as p1, po, ..., pn. Consider the number

N=pip2-pn+1

By construction N is not divisible by any of the primes p;. Therefore N has no prime
divisors at all, which contradicts the fundamental fact that every integer greater than
1 has at least one prime divisor. Hence there cannot be only finitely many primes.

Example 2. Five boys found nine mushrooms. Prove that at least two of them
must have found the same number of mushrooms.

Solution. Assume that the boys all found different numbers of mushrooms. Order
them by increasing number of mushrooms: the first boy picked at least 0 mushrooms,
the second at least 1, the third at least 2, the fourth at least 3 and the fifth at least
4. Altogether they would have picked at least 0+ 142+ 3 4+ 4 = 10 mushrooms,
contradicting the fact that there were only nine mushrooms. Thus at least two boys
must have collected the same number of mushrooms.

Example 3. Prove that there does not exist a tetrahedron (triangular pyramid) in
which each edge is adjacent to an obtuse angle of one of its faces.

Solution. Suppose such a tetrahedron exists. In any triangle the side opposite
an obtuse angle is the largest side. Therefore each edge of the tetrahedron must
be strictly shorter than some other edge that is adjacent to the obtuse angle. Since

12



the number of edges in a tetrahedron is finite, this strict inequality cannot cycle
indefinitely; the assumed configuration leads to an infinite descending chain of lengths,
which is impossible. Hence no such tetrahedron exists.

Example 4. Prove that log, 3 is an irrational number.
Solution. Assume otherwise and write log, 3 = g with p and g positive integers.

Then 2P/9 = 3, i.e. 2P =39, The left side is even while the right side is odd. This
contradiction shows that log, 3 is irrational.

1.2.2 :: :: pigeonhole principle

In its simplest form the pigeonhole principle says that if ten rabbits sit in nine boxes,
then some box must contain at least two rabbits. A more general formulation is: “If
n rabbits sit in k boxes, then there exists a box containing at least [n/k] rabbits and
a box containing at most |n/ k| rabbits.” Do not be put off by fractional rabbits—if
10/9 rabbits must sit in a box, then in fact at least two do.

Proof of the principle. Assume that each of the k boxes contains strictly fewer
than n/k rabbits. Then altogether there are fewer than (n/k) k = n rabbits, which
contradicts the assumption that there are n rabbits. This simple argument illustrates
why similar reasoning occurs throughout combinatorics.

The pigeonhole principle may seem obvious, but in order to apply it one must
sometimes think carefully about what plays the role of “rabbits” and what plays the
role of "boxes”. For example, if each element of a set A corresponds to exactly one
element of a set B, then one may call the elements of A rabbits and those of B boxes.

The principle also has continuous versions. For instance: “If n rabbits eat mkg of
grass, then some rabbit ate at least m/nkg and some rabbit ate at most m/nkg.” In
this formulation the rabbits play the role of boxes for the grass, while the grass plays
the role of rabbits sitting in boxes.

Example 1. There are 400 students in a school. Prove that at least two of them
were born on the same day of the year.

Solution. There are 366 days in a year. Think of the students as rabbits and the
days of the year as boxes. Then some box must contain at least [400/366] = 2
students, i.e. two students share a birthday.

13



Example 2. The ocean covers more than half of the Earth’s surface. Prove that
somewhere in the ocean there are two antipodal points (diametrically opposite points
on the globe).

Solution. Reflect the ocean through the centre of the Earth. The union of the
ocean and its reflection covers more than the entire surface of the Earth, so there is
a point that lies in both. Such a point and its antipode are both in the ocean.

Example 3. Sixty five schoolchildren came to an exam. They were given three tests.
On each test the score was one of 2, 3, 4 or 5. Must there be two pupils who got
the same grades on all three tests?

Solution. There are 43 = 64 possible triples of grades. Since 65 pupils take part,
by the pigeonhole principle at least two of them must have identical triples of grades.

Example 4. Prove that among any five people there are two who have the same
number of acquaintances among these five people (a person may be unacquainted
with everyone).*?

1.2.3 :: :: invariants

Invariant — a quantity which does not change as a result of certain operations (for
example, cutting and rearranging parts of a figure does not change the total area). If
an invariant distinguishes two configurations, then it is impossible to pass from one
to the other. As an invariant one can use parity or a coloring. In problems about the
sum of digits, the remainders upon division by 3 or 9 are often used.

Semi-invariant — a quantity that changes only in one direction (that is, it can
only increase or only decrease). The concept of a semi-invariant is often used when
proving that a process terminates.

Example 1. A wonder-apple tree grows both bananas and pineapples. In one move
one is allowed to pick two fruits from it. If two bananas or two pineapples are picked,
then one more pineapple grows; if one banana and one pineapple are picked, then one
banana grows. In the end there remains one fruit. Which fruit is it, if it is known how
many bananas and pineapples were there initially?

0 Comment: The possible numbers of acquaintances are 0,1,2,3,4. If 0 is among them, then 4 is
not possible, so we have only 4 possibilities for 5 people. The same is true when there is no person
with O acquaintances.

14



Solution. The parity of the number of bananas does not change, therefore, if the
number of bananas was even, the remaining fruit is a pineapple, and if it was odd,
then it is a banana.!!

Example 2. In one cell of a 4 x 4 square table there is a minus sign, and in all the
other cells there are pluses. It is allowed to change at once the signs in all cells of
any one row or any one column. Prove that, no matter how many such changes of
signs we perform, it is impossible to obtain a table consisting entirely of pluses.

Solution. Let us replace the sign “+" by the number 1 and the sign “—" by
—1. Note that the product of all numbers in the table does not change when the
signs in all numbers of any one row or column are flipped. In the initial position this
product is —1, and in the table consisting entirely of pluses it is +1, which proves the
impossibility of transition.'?

Example 3. On a straight line there stand two chips: on the left a red one, on
the right a blue one. It is allowed to perform either of two operations: insert two
chips of the same color next to each other (between any two chips or at the edge),
or remove a pair of neighboring chips of the same color (between which there are no
other chips). Is it possible, by using such operations, to leave exactly two chips on
the line, a blue one on the left and a red one on the right?

Solution. Consider the number of pairs of chips of different colors (not necessarily
neighboring), where the left chip is red. Note that the parity of this number does
not change. In the initial configuration this number is odd (equal to 1), but in the
desired configuration it is even (0). Therefore it is impossible to reach the desired
configuration.*®

Example 4. On the island of Grey-Brown-Raspberry live chameleons: 13 grey, 15
brown, and 17 raspberry-colored ones. If two chameleons of different colors meet,
then both change their color to the third one. Can it happen that at some moment
all the chameleons on the island become of the same color?

Hint. Let us denote by B, G, and M the numbers of brown, grey, and rasp-
berry chameleons, respectively. Prove that the remainders upon division by 3 of the

1 Comment: The invariant is the parity of the number of bananas. The text implicitly assumes
that the process continues until one fruit remains.

12Comment: The invariant here is the product of all entries in the table, equal to —1 at the start.

3Comment: The invariant is the parity of the number of red—blue pairs in that order.
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differences B — G, G — M, and M — B do not change.'*

Example 6. Is it possible to cut a round disc into several parts and assemble from
them a square? (The cuts are pieces of straight lines and arcs of the circle.)

Solution. Consider the invariant: the difference of the sums of the lengths of
concave and convex boundary arcs of all the pieces. This quantity does not change
when a piece is cut into two, nor when two pieces are joined together. For a unit
round disc this invariant equals 27, and for a square it equals 0. Therefore “squaring
the circle” is impossible.'®

1.2.4 :: :: problems for tutorial

1. Is it possible to connect five cities by roads so that each city is connected with
exactly three others? 1©

2. Prove that there does not exist a polyhedron whose number of faces is odd and
such that each face has an odd number of vertices. *

3. In each cell of an m x k rectangular array there is a number. The sum of the
numbers in each row and in each column is 1. Prove that m = k. 8

4. A class contains 25 students. It is known that among any three students there
are two who are friends. Prove that there is a student who has at least 12
friends. 1°

14Comment: The invariant consists of the three residues modulo 3 of the color differences; since
they cannot all become zero simultaneously, a single color for all chameleons is impossible.

15Comment: The invariant compares total curvature (arc excess vs. deficit) of the boundary. Since
it is preserved under cutting and joining, the transition from circle to square is impossible.

% Comment: In graph—theoretic terms this asks for a five vertex 3—regular graph. The sum of
degrees would be 15, which contradicts the handshaking lemma stating that the sum of degrees
must be even.

7 Comment: If F is the number of faces and each face has an odd number of edges, then the
sum of the number of all edges in of faces is odd; however this sum also equals 2E (since each edge
belongs to two faces), which is even. Therefore F must be even.

8 Comment: Summing by rows gives a total of m, while summing by columns gives a total of k.
Therefore m = k.

19Comment: In a graph on 25 vertices without an independent set of size 3 the average degree is
more than %; hence some vertex has degree at least 12.
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5. A committee of 60 people held 40 meetings. Exactly 10 committee members
attended each meeting. Prove that some two members met at committee
meetings at least twice. 2°

1.2.5 :: :: problems for workshop

1. Is there a convex polygon with more than three acute angles? 2!
2. Prove that there are infinitely many prime numbers of the forms

(a) 4k +3, %2
(b) 3k+2, 23
(c) 6k+5. 2

3. Prove that if (m—1)!+ 1 is divisible by m, then m is a prime number. 2°

4. In a class of 30 pupils a test was written. Nikita made 13 mistakes and every
other pupil made strictly fewer. Prove that there are three pupils who made
the same number of mistakes. 2°

5. The Earth has more than six billion inhabitants and no person older than 150
years exists. Prove that there are two people on Earth who were born at exactly
the same second. 2/

20Comment: Double count the pairs (meeting, {two participants}). There are 40 x (120) such pairs,
but there are only (620) pairs of committee members. By the pigeonhole principle some pair must
occur at least twice.

21Comment: The answer is no. In a convex n—gon the sum of the interior angles is 180(n — 2)
degrees. If all k angles are acute then their sum is less than 90k, forcing 180(n—2) < 90k + 180(n—
k); from this one sees that k < 3.

22Comment: Consider the number 4p1po - -+ pn + 3 where the p; run over all primes of the form
4k + 3.

23Comment: The same idea works by considering 3p1po - pn + 2.

24Comment: The argument is analogous; take 6pipp - - pn + 5.

25Comment: This is a one direction form of Wilson's theorem. The converse is well known: if m
is prime then (m—1)! = —1 (mod m).

26Comment: Excluding Nikita leaves 29 pupils making between 0 and 12 mistakes. There are 13
possible values and 29 pupils, so by the pigeonhole principle some value is taken by at least three
pupils.

2"Comment: The number of seconds in 150 years is approximately 150 x 365 x 24 x 60 x 60,
which is less than six billion. Therefore two of the more than six billion birth instants must coincide.
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6. Twelve lines are drawn in the plane. Prove that some two of them form an
angle of at most 15°. 28

7. A drawer contains socks: 10 black, 10 blue and 10 white. What is the smallest
number of socks one must draw without looking in order to guarantee that
among the drawn socks there are

(a) two of the same colour;?’

(b) two of different colours;3°

(c) two black socks?3?
8. Thirty six stones were mined in a quarry. Their masses form an arithmetic

progression 490, 495,500, ...,665 kg. Is it possible to transport these stones
using seven trucks, each of capacity 3 tonnes (3000 kg)?3?

28Comment: Partition the 180° around a point into 12 intervals of length 15°. By the pigeonhole
principle two of the directions of lines must lie in the same interval.

29Comment: Taking 4 socks guarantees at least two of the same colour, since 3 colours and 4
socks force a repetition.

30Comment: One could draw all 10 socks of one colour without yet having two colours. The
eleventh sock guarantees at least one sock of a different colour.

3lComment: In the worst case one draws all 20 non black socks before drawing a black one. The
next sock (the 22nd) must then be a second black.

32Comment: The total mass of the stones is 36 x 577.5 = 20790 kg. Seven trucks can carry
21000 kg, so sufficient capacity exists. But....
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1.2.6
Read:

:: 2nd homework

Kenneth H. Rosen, Discrete Mathematics and Its Applications, p.313, 320-321.
If you don’t understand certain notation, just skip it for now (or find the explanation
in the first chapter of this book), we will cover it later.

Write:

PRINCIPLE OF MATHEMATICAL INDUCTION To prove that P(n) is true for all
positive integers n, where P(n) is a propositional function, we complete two steps:

BASIS STEP: We verify that P(1) is true.

INDUCTIVE STEP: We show that the conditional statement P(k) — P(k + 1) is true for
all positive integers k.

To complete the inductive step of a proof using the principle of mathematical induction, we
assume that P (k) is true for an arbitrary positive integer k and show that under this assumption,
P(k + 1) must also be true. The assumption that P (k) is true is called the inductive hypothesis.
Once we complete both steps in a proof by mathematical induction, we have shown that P (n) is
true for all positive integers, that is, we have shown that Y P(n) is true where the quantification
is over the set of positive integers. In the inductive step, we show that Vk(P(k) — P(k + 1))
is true, where again, the domain is the set of positive integers.
Expressed as a rule of inference, this proof technique can be stated as

(P() AVK(P(k) = P(k+1))) = YnP(n),

when the domain is the set of positive integers. Because mathematical induction is such an
important technique, it is worthwhile to explain in detail the steps of  proof using this technique.
‘The first thing we do to prove that P (n) is true for all positive integers n is to show that P(1) is
true. This amounts to showing that the particular statement obtained when n is replaced by 1 in
P(n) is true. Then we must show that P(k) — P(k + 1) is true for every positive integer k. To
prove that this conditional statement is true for every positive integer k, we need to show that
Pk + 1) cannot be false when P(k) is true. This can be accomplished by assuming that P (k)
is true and showing that under this hypothesis P (k + 1) must also be true.

Remark: In a proof by mathematical induction it is not assumed that P (k) is true for all positive
integers! It is only shown that f it is assumed that P(k) is true, then P(k + 1) is also true. Thus,
a proof by mathematical induction is not a case of begging the question, or circular reasoning.

When we use mathematical induction to prove a theorem, we first show that P(1) is true. Then
we know that P(2) is true, because P(1) implies P(2). Further, we know that P(3) is true,
because P(2) implies P(3). Continuing along these lines, we see that P(n) is true for every
positive integer .

EXAMPLE? An Inequality for Harmonic Numbers The harmonic numbers H,j = 1.2,3. ... are
defincd by

11 1
Hy=1434 34+
2 i

1. A snail crawls in the plane at a constant speed and every 15 minutes turns 90°
(sometimes left, sometimes right). Prove that it can return to its starting point
only after an integer number of hours.

2. In the language of a certain tribe there are only two sounds (written here as
w and y). Two words are considered the same if one can be obtained from
the other by a sequence of operations of two types: deleting a consecutive
occurrence of wy or yyww and inserting yw at any position. Do the words ywy
and wyw represent the same word?

3. Three grasshoppers sit at three vertices of a square in the plane. They play a
game of leapfrog: one grasshopper jumps to the point symmetric to another
grasshopper across the third (a point A is symmetric to a point B with respect
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to a point C if C is the middle of the interval AB, here A, B, C are points on
the plane.) Can any grasshopper ever land on the fourth vertex of the square?

4. There is an island populated by knights and liars. Knights always tell truth,
liars always lie. A stranger meets three local persons and asks everybody: “how
many knights are among you three?”. The first answered: no one. The second
answered: one. What is the answer of the third person?

5. Automate can shred a piece of paper on 4 or 6 pieces. What number of pieces
can be reached from one sheet?

6. Prove that among any 52 integers there exist two whose sum or difference is
divisible by 100.

Just for fun, not a part of the homework: use Al, ask them to solve the
following problem, then try to understand their solution, then check, if it is at
all correct:

Four identical jars are filled to three quarters with paint, each containing a different
colour. It is possible to pour any portion of the contents of one jar into another. Is it
possible to perform a finite sequence of pourings so that each jar contains an identical
mixture of the four colours?

Try to solve this problem by yourself.

Last, but not least. Read the next page for a short advice on how to write
solutions with a good and bad example.
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Example of bad and good writing

Five boys found nine mushrooms. Prove that at least two of them must have found

the same number of mushrooms.

Bad solution

Good solution

It is not possible that they found different
numbers of mushroom because in this case
they will find at least 10 mushrooms33, be-
cause in the worst3* case the first3® found 0,
the second found 1 mushroom, etc, 0+ 1 +
2+344=10.

Assume that the boys all found different
numbers of mushrooms. Order them by in-
creasing number of mushrooms. Then, the
first boy picked at least 0 mushrooms, the
second at least 1, the third at least 2, the
fourth at least 3 and the fifth at least 4.

Altogether they would have picked at least
0+1+2+3+4 = 10 mushrooms, con-
tradicting the fact that there were only nine
mushrooms. Thus at least two boys must
have collected the same number of mush-
rooms.

In a good solution each step is small and incremental, it might be

e an assumption (the first phrase states the proof strategy 'by contradiction’),

an action ('Order them..."),

introducing a notation ('Denote ... by ... '),

e a computation,

or a conclusion derived from the preceeding steps.

Use single-action sentences: 'Assume this. Count that. Then A. Then B." A
solution is good (or formal) if it is easy to follow its logical structure and easy to
check each step separately (assume that a reader has a limited amount of memory).

Instead of A, because of B, write ‘B, therefore A’

Exercise: look at solutions of the problems across these notes and evaluate their
quality, try to cut them into such elementary steps.

33Here the reader asks ‘'why'? It is better if, whenever it is possible, each next step immediately
follows from the previous one, and explanations are given BEFORE a statement.

34Where is the definition of the worst case? And even if you give such a definition, then you need
to show that the case 0,1,2,3,4 is indeed the worst case.

35What if the first found 3 and the second 07 Then you need to consider all these cases or convince
the reader that these cases are all the same, i.e. as ‘ordering’ step in the good solution.
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